
	 Companion eBook	

Shelve in
Mobile Computing

User level:
Intermediate–Advancedwww.apress.com

Books for professionals by professionals®

Learn how to deliver cross-platform mobile web applications from a uni-
fied interface with Pro jQuery Mobile. This book will teach you how to

create themable, responsive, native-looking applications for iOS, Android,
Windows Phone, and more. You’ll see what sets jQuery Mobile apart from
other mobile web development platforms as author Brad Broulik walks you
through practical examples of jQuery Mobile features, including design ele-
ments and event handling.

Pro jQuery Mobile shows you how to:

• Apply jQuery Mobile to specific cases, including iOS and Android apps

• Use jQuery Mobile’s core features, including page structure, navigation,
	 and form elements

• Format content with grids and CSS

• Publish your apps to app stores via PhoneGap

• Integrate web services and Google Maps into your jQuery Mobile apps

• Combine responsive layouts with progressive enhancement to render
the best possible user experience from a single code base

With Pro jQuery Mobile, you’ll be creating and publishing amazing mobile
apps in no time.

Re
la

te
d

Ti
tl

es

Pro
jQuery Mobile

Brad Broulik

Cross-platform mobile development
with the power of jQuery

Companion
eBook
Available

Broulik
ProjQuery M

obile
SOURCE CODE ONLINE

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iv

Contents at a Glance

Contents .. v

About the Authorix

About the Technical Reviewer ... x

Acknowledgments ... xi

Introduction .. xii

■Chapter 1: Why jQuery Mobile? ... 1

■Chapter 2: Getting Started with jQuery Mobile .. 13

■Chapter 3: Navigating with Headers, Toolbars, and Tab Bars 39

■Chapter 4: Form Elements and Buttons ... 63

■Chapter 5: List Views ... 107

■Chapter 6: Formatting Content with Grids and CSS Gradients 125

■Chapter 7: Creating Themable Designs ... 147

■Chapter 8: jQuery Mobile API .. 171

■Chapter 9: Service Integration Strategies ... 201

■Chapter 10: Easy Deployment with PhoneGap .. 227

Index ... 249

1

 Chapter

Why jQuery Mobile?
jQuery Mobile is a new, simple to use, UI framework for building cross-platform Mobile

Web applications. In a matter of minutes, you can create mobile applications (apps) that

are optimized to run on nearly every phone, tablet, desktop, and e-reader device

available today. That’s right, with a single jQuery Mobile codebase we can create a

unified experience for nearly all consumers. jQuery Mobile is an ideal framework for any

Web designer or developer who needs a simple framework for creating a rich mobile

Web experience. The experience also extends beyond the Web. jQuery Mobile apps can

also be compiled with hybrid techniques for distribution within your favorite native app

store. As we begin our journey, let's review the important features that make jQuery

Mobile unique.

Universal Access
jQuery Mobile applications are universally accessible to all devices with a browser. This

is a favorable reach advantage to jQuery Mobile’s distribution model (see Figure 1–1).

Nearly every mobile device ships with a browser. If your app is universally accessible to

this broad spectrum it is a major competitive advantage. The following is a complete

listing of supported devices in jQuery Mobile 1.0, which includes most phones, tablets,

desktop browsers, and even e-readers.

1

CHAPTER 1: Why jQuery Mobile? 2

Figure 1–1. jQuery 1.0 Mobile Browser Coverage

Supported Devices:

 Phones/Tablets

 Android 1.6+

 BlackBerry 5+

 iOS 3+

 Windows Phone 7

 WebOS 1.4+

 Symbian (Nokia S60)

 Firefox Mobile Opera Mobile 11+

 Opera Mini 5+

 Desktop browsers

 Chrome 11+

 Firefox 3.6+

 Internet Explorer 7+

 Safari

 e-readers

 Kindle

 Nook

CHAPTER 1: Why jQuery Mobile? 3

NOTE: For an up-to-date listing of all supported platforms, refer to jQuery Mobile's supported

platforms page (see http://jquerymobile.com/gbs/).

Comparatively, native application development has a very restrictive distribution model

(see Figure 1–2). Native applications are only available on their native operating system.

For example, an iPhone app is only accessible from an iOS device. If your goal is to

reach the most consumers possible this distribution model is limited. Fortunately, jQuery

Mobile apps are not restricted by this distribution barrier.

I

Figure 1–2. Native OS Coverage

n addition to universal access, jQuery Mobile applications can take advantage of the

instant deployment capabilities we have grown accustomed to on the Web. For jQuery

Mobile apps, no barriers exist in regards to certification reviews that are required within

the native app distribution model. Mobile Web apps can be updated and deployed

instantly to your production users. For example, I was recently working on a native

enterprise application that needed an update and it took a week for the re-certification

process to approve the change. In all fairness, the native app stores have options to

submit urgent updates but the point is you will be dependent upon a third party to push

the update to their store. The instantaneous deployment model of the Mobile Web is

very advantageous in this regard.

http://jquerymobile.com/gbs/

CHAPTER 1: Why jQuery Mobile? 4

Unified UI Across All Mobile Platforms
jQuery Mobile delivers a unified user interface by designing to HTML5 and CSS3

standards. Mobile users expect their user experience to be consistent across platforms

(see Figure 1–3, Figure 1–4, Figure 1–5). Conversely, compare the native Twitter apps

on both iPhone and Android. The experience is not unified. jQuery Mobile applications

remedy this inconsistency, providing a user experience that is familiar and expected,

regardless of the platform. Additionally, a unified user interface will provide consistent

documentation, screen shots, and training regardless of the end user platform. For

example, if your sales staff needs training on a new mobile app that is being deployed

the user documentation will contain consistent screen shots that apply to all platforms. If

half the team has iPhones and the other half has Android devices, the training

experience and documentation will be the same for all users.

Figure 1–3. iPhone Figure 1–4. Windows Phone Figure 1–5. Android

jQuery Mobile also helps eliminate the need for device-specific UI customizations. A

single jQuery Mobile code base will render consistently across all supported platforms

without customizations. This is a very cost-effective solution compared to an

organization supporting a native code base per OS. And supporting a single code base

is much more cost-effective long term in regards to support and maintenance costs (see

Figure 1–6).

CHAPTER 1: Why jQuery Mobile? 5

Figure 1–6. Cost Multiplier by Mobile Technology Stack

Simplified Markup-Driven Development
jQuery Mobile pages are styled with HTML5 markup (see Listing 1–1.). Aside from the

new custom data attributes introduced in HTML5, everything should appear very familiar

for Web designers and developers. If you are already familiar with HTML5 migrating to

jQuery Mobile should be a relatively seamless transition. In regards to JavaScript and

CSS, jQuery Mobile does all of the heavy lifting by default. However, there are instances

where you may need to rely upon JavaScript to create a more dynamic or enhanced

page experience. In addition to the simplicity of the markup required to design pages it

also allows for rapid prototyping of user interfaces. Very quickly we can create a static

workflow of functional pages, transitions, and widgets to help our customers see live

prototypes with minimal effort.

CHAPTER 1: Why jQuery Mobile? 6

Listing 1–1. Insert listing caption here.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Title</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.0.min.css" />
 <script type="text/javascript" src="jquery-1.6.2.min.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.0.min.js"></script>
</head>
<body>

<div data-role="page">
 <div data-role="header">
 <h1>Page Header</h1>
 </div>

 <div data-role="content">
 <p>Hello jQuery Mobile!</p>
 </div>

 <div data-role="footer">
 <h4>Page Footer</h4>
 </div>

</div>

</body>
</html>

Progressive Enhancement
jQuery Mobile will render the most elegant user experience possible for a device. For

example, look at the jQuery Mobile switch control in Figure 1–7. This is the switch

control on an A-Grade browser.1

1
 An A-Grade browser supports media queries and will render the best experience possible

from jQuery Mobile CSS3 styling.

CHAPTER 1: Why jQuery Mobile? 7

Figure 1–7. A-Grade Experience Figure 1–8. C-Grade Experience

jQuery Mobile renders the control with full CSS3 styling applied. Alternatively, Figure 1–8

is the same switch control rendered on a much older C-Grade browser.2 The C-grade

browser does not render the full CSS3 styling.

IMPORTANT: Although the C-Grade experience is not the most visual appealing it demonstrates
the usefulness of graceful degradation. As users upgrade to newer devices, the C-Grade browser
market will eventually diminish. Until this crossover takes place, C-Grade browsers will still

receive a functional user experience when running a jQuery Mobile app.

Native applications do not always degrade as gracefully. In most cases, if your device

does not support a native app feature you will not even be allowed to download the app.

For instance, a new feature in iOS 5 is iCloud persistence. This new feature simplifies

data synchronization across multiple devices. For compatibility, if we create a new iOS

app that incorporates this new feature we will be required to set the “minimum allowed

SDK” for our app to 5.0. Now our app will only be visible in the App Store to users

running iOS 5.0 or greater. jQuery Mobile applications are more flexible in this regard.

2 A C-Grade browser does not support media queries and will not receive styling

enhancements from jQuery Mobile.

CHAPTER 1: Why jQuery Mobile? 8

Responsive Design
A jQuery Mobile UI will render responsively across different display sizes. For example,

the same UI will display appropriately on phones (see Figure 1–9) or larger devices such

as tablets, desktops, or TVs (see Figure 1–10).

Figure 1–9. Phone Display

CHAPTER 1: Why jQuery Mobile? 9

Figure 1–10. Tablet/Desktop/TV Display

The Build Once, Run Anywhere Myth
Is it possible to build a single application that is universally available for all consumers

(phones, desktops, tablets)? Yes, it is possible. The Web provides universal distribution.

jQuery Mobile provides cross-browser support. And with CSS media queries we can

begin tailoring our UI to best fit the form factor. For example, on small devices we can

serve small images with brief content whereas on larger devices we may serve up larger

images with detailed content. Today, most organizations with a mobile presence

typically support both a desktop Web and a mobile site. There is waste any time you

must support multiple distributions of an application. The rate at which organizations are

embracing mobile presences, combined with their need to avoid waste, will drive the

build once run anywhere myth to fruition.

Responsive Forms
In certain situations, jQuery Mobile will create responsive designs for you. The

following figures show how well jQuery Mobile’s responsive design applies to form

field positioning in portrait versus landscape mode. For instance, in the portrait view

(see Figure 1–11) the labels are positioned above the form fields. Alternatively, when

repositioning the device in landscape (see Figure 1–12) the form fields and labels

appear side-by-side. This responsive design provides the most usable experience

CHAPTER 1: Why jQuery Mobile? 10

based on the devices available to screen real estate. jQuery Mobile provides many of

these good UX principles for you without any effort on your part!

Figure 1–11. Responsive Design (portrait) Figure 1–12. Responsive Design (landscape)

Themable Styling
jQuery Mobile supports a themable design that allows designers to quickly re-style their

UI. By default, jQuery Mobile provides five themable designs with the flexibility to

interchange themes for all components including page, header, content, and footer

components. The most useful tool for creating custom themes is ThemeRoller3.

Restyling a UI takes minimal effort. For example, I can quickly take a default themed

jQuery Mobile application (see Figure 1–13) and re-style it with another built-in theme in

seconds. In the case of my modified theme (see Figure 1–14), I chose an alternate theme

from the list. The only markup required was an addition of a data-theme attribute. We

will discuss themes in greater detail in Chapter 7.

<!-- Set the lists background to black -->
<ul data-role="listview" data-inset="true" data-theme="a">

3
 See http://jqueryui.com/themeroller/. ThemeRoller is a web-based tool that automates

the process of generating new CSS-based themes.

http://jqueryui.com/themeroller/

CHAPTER 1: Why jQuery Mobile? 11

Figure 1–13. Default Theme Figure 1–14. Alternate Theme

Accessible
jQuery Mobile apps are 508 compliant by default, a characteristic that is valuable to

anyone.4

In particular, government or state agencies require their applications to be 100%

accessible. Furthermore, mobile screen reader usage is rising. According to WebAIM,5

66.7% of screen reader users use the screen reader on their mobile device.

4
 508 Compliance is a federal law that requires applications to be accessible by users with

disabilities. The most commonly used assistive technologies on the mobile Web are screen

readers.

5
 See http://webaim.org/projects/screenreadersurvey3/#mobileusage.

http://webaim.org/projects/screenreadersurvey3/#mobileusage

CHAPTER 1: Why jQuery Mobile? 12

TIP: Interested in testing your mobile site for 508 compliance? Evaluate your mobile site with WAVE.6

In addition to testing your mobile apps accessibility with WAVE it is also valuable to

physically test your Mobile Web application with an actual assistive technology. For

example, if you have an iOS device, activate Apple’s Accessibility tool, VoiceOver7 and

experience the behavior first hand.

NOTE: If you are interested in viewing existing jQuery Mobile applications, an online jQuery

Mobile Gallery is available for ideas and inspiration (see http://www.jqmgallery.com/).

Summary
In this chapter, we reviewed the important features that make jQuery Mobile unique:

 jQuery Mobile apps are universally available to all devices with a

browser and are optimized to run on nearly every phone, tablet,

desktop, and e-reader device available today.

 jQuery Mobile applications can take advantage of the instant

deployment capabilities we have grown accustomed to on the Web.

 A single jQuery Mobile code base will render consistently across all

supported platforms without customizations. This is a very cost-

effective solution when compared to the alternative of building an app

for each OS or client.

 jQuery Mobile is a simplified markup-driven framework that should

appear very familiar to Web designers and developers. You may be

very surprised and excited by the fact that you can build jQuery Mobile

apps with 100% markup!

 jQuery Mobile utilizes progressive enhancement techniques to render

a very rich experience for all A-grade devices and provides a usable

experience for older C-grade browsers.

 A jQuery Mobile UI will render responsively across devices of various

sizes including phones, tablets, desktops, or TV’s.

 jQuery Mobile supports a themable design that allows designers to

quickly re-style their UI globally.

 All jQuery Mobile applications are 508 compliant.

6 See http://wave.webaim.org/.

7
 See http://www.apple.com/accessibility/iphone/vision.html.

http://www.jqmgallery.com/
http://wave.webaim.org/
http://www.apple.com/accessibility/iphone/vision.html

13

 Chapter

Getting Started with
jQuery Mobile
In Chapter 1, we reviewed the characteristics that make jQuery Mobile unique. Now we
are going to review the basics of jQuery Mobile so we can get up and running quickly.
We will start with an overview of the jQuery Mobile page template. There are actually
two page templates you may choose from and we will discuss the advantages of each.
Next, we will peek under the hood and see how jQuery Mobile enhances our semantic
markup into an optimized mobile experience. Also, we will explore how the jQuery
Mobile navigation model works. Although jQuery Mobile manages the entire navigational
experience it is important to have an understanding of how the navigation model works.
And lastly, we will show you how to make your page transitions really "pop." Anxious to
get rolling? Let's begin with an example of a jQuery Mobile page.

jQuery Mobile Page Template
A jQuery Mobile page template is shown in Listing 2–1. Before we continue any further,
let’s get up and running. Copy the HTML template (ch2/template.html), paste it on your
desktop and launch it from your favorite browser. You are now running a jQuery Mobile
app that should look identical to Figure 2–1 regardless of what browser you are using!
The template is semantic HTML5 and contains the jQuery Mobile specific attributes and
asset files (CSS, js). Each specific jQuery Mobile asset and attribute is highlighted and
explained in Listing 2–1.

Listing 2–1. jQuery Mobile Page Template (ch2/template.html)

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Title</title>
 <meta name="viewport" content="width=device-width, initial-scale=1"> 1
 <link rel="stylesheet" type="text/css" href="jquery.mobile.css" /> 2
 <script type="text/javascript" src="jquery.js"></script> 3

2

CHAPTER 2: Getting Started with jQuery Mobile 14

 <!--<script src="custom-scripts-here.js"></script>--> 4
 <script type="text/javascript" src="jquery.mobile.js"></script> 5
</head>
<body>

<div data-role="page"> 6
 <div data-role="header"> 7
 <h1>Page Header</h1>
 </div>

 <div data-role="content"> 8
 <p>Hello jQuery Mobile!</p>
 </div>

 <div data-role="footer"> 9
 <h4>Page Footer</h4>
 </div>
</div>

</body>
</html>

1. This is the recommended viewport configuration for jQuery Mobile. The device-

width value indicates we want the content to scale the full width of the device.

The initial-scale setting sets the initial scaling or zoom factor used for viewing

a Web page. A value of 1 displays an unscaled document. As a jQuery Mobile

developer you can customize the viewport settings to your application needs. For

example, if you wanted to disable zoom you would add user-scalable=no.

However, disabling zoom is a practice you would want to do sparingly because it

breaks accessibility.

2. jQuery Mobile’s CSS will apply stylistic enhancements for all A-Grade and B-

Grade browsers. You may customize or add your own CSS as necessary.

3. The jQuery library is a core dependency of jQuery Mobile and it is highly

recommended to leverage jQuery’s core API within your Mobile pages too if your

app requires more dynamic behavior.

4. If you need to override jQuery Mobile’s default configuration you can apply your

customizations here. Refer to Chapter 8, Configuring jQuery Mobile, for details on

customizing jQuery Mobile’s default configuration.

5. The jQuery Mobile JavaScript library must be declared after jQuery and any

custom scripts you may have. The jQuery Mobile library is the heart that enhances

the entire mobile experience.

6. data-role="page" defines the page container for a jQuery Mobile page. This

element is only required when building multi-page designs (see Listing 2–3).

7. data-role="header" is the header or title bar as shown in Figure 2–1. This

attribute is optional.

CHAPTER 2: Getting Started with jQuery Mobile 15

8. data-role="content" is the wrapping container for the content body. This

attribute is optional.

9. data-role="footer" contains the footer bar as shown in Figure 2–1. This attribute

is optional.

IMPORTANT: The sequence of the CSS and JavaScript files must appear in the order as listed in
Listing 2–1. The ordering is necessary to properly initialize the dependencies before they are
referenced by jQuery Mobile. Additionally, it is recommended to download these files from a
Content Delivery Network (CDN). In particular, you may download them from the jQuery Mobile

CDN.1 The files from the CDNs are highly optimized and will provide a more responsive

experience for your users. They are compressed, cached, minified, and can be loaded in parallel!

Figure 2–1. Hello jQuery Mobile

1 See http://jquerymobile.com/download/.

http://jquerymobile.com/download/

CHAPTER 2: Getting Started with jQuery Mobile 16

TIP: To position the footer at the very bottom of the screen, add data-position=
"fixed" to the footer element. A default footer is positioned after the content and not at the
bottom of the device. For instance, if your content only consumed half the device height, the

footer would appear in the middle of the screen.

<div data-role="footer" data-position="fixed">

jQuery Mobile Page Enhancements
How does jQuery Mobile enhance the markup for an optimized mobile experience? For a
visual, refer to Figure 2–2.

1. First, jQuery Mobile will load the semantic HTML markup (see Listing 2–1).

2. Next, jQuery Mobile will iterate each page component, defined by their data-role

attribute. As jQuery Mobile iterates each page component it will enhance the

markup and apply mobile optimized CSS3 enhancements for each component.

jQuery Mobile ultimately enhances the markup into a page that renders universally

across all mobile platforms.

3. Lastly, after the page enhancements are complete, jQuery Mobile will show the

optimized page. See Listing 2–2 for a view of the enhanced source that gets

rendered by the mobile browser.

Figure 2–2. jQuery Mobile Page Enhancements Diagram

CHAPTER 2: Getting Started with jQuery Mobile 17

Listing 2–2. jQuery Mobile Enhanced DOM

<!DOCTYPE html>
<html class="ui-mobile>
 <head>
 <base href="http://www.server.com/app-name/path/"> 1
 <meta charset="utf-8">
 <title>Page Header</title>
 <meta content="width=device-width, initial-scale=1" name="viewport">
 <link rel="stylesheet" type="text/css" href="jquery.mobile-min.css" />
 <script type="text/javascript" src="jquery-min.js"></script>
 <script type="text/javascript" src="jquery.mobile-min.js"></script>
 </head>

 <body class="ui-mobile-viewport"> 2
 <div class="ui-page ui-body-c ui-page-active" data-role="page"
 style="min-height: 320px;">
 <div class="ui-bar-a ui-header" data-role="header" role="banner">
 <h1 class="ui-title" tabindex="0" role="heading" aria-level="1">
 Page Header
 </h1>
 </div>

 <div class="ui-content" data-role="content" role="main">
 <p>Hello jQuery Mobile!</p>
 </div>

 <div class="ui-bar-a ui-footer ui-footer-fixed fade ui-fixed-inline"
 data-position="fixed" data-role="footer" role="contentinfo"
 style="top: 508px;">
 <h4 class="ui-title" tabindex="0" role="heading" aria-level="1">
 Page Footer
 </h4>
 </div>
 </div>

 <div class="ui-loader ui-body-a ui-corner-all" style="top: 334.5px;">

 <h1>loading</h1>
 </div>

 </body>
</html>

1. The base tag’s @href specifies a default address or the default target for all links

on a page. For example, jQuery Mobile will leverage @href when loading page-

specific assets (images, CSS, js, etc.).

2. The body tag contains the enhanced styling for the header, content, and footer

components. By default, all components have been styled with the default theme

and their mobile-specific CSS enhancements. As an added bonus, all

components now support accessibility thanks to the addition of the WAI-ARIA

roles and levels. You get all these enhancements for free!

http://www.server.com/app-name/path/

CHAPTER 2: Getting Started with jQuery Mobile 18

By now you should feel comfortable designing a basic jQuery Mobile page. You have
been introduced to the core page components (page, header, content, footer) and
have seen the resulting DOM of an enhanced jQuery Mobile page. Next we will explore
jQuery Mobile’s multi-page template.

Multi-Page Template
jQuery Mobile supports the ability to embed multiple pages within a single HTML
document as shown in Listing 2–3. This strategy can be used to prefetch multiple pages
up front and achieve quicker response times when loading sub-pages. As you can see in
the example below, the multi-page document is identical to the single-page template we
saw earlier except a second page has been appended after the first page. The multi-
page specific details are highlighted and discussed below.

Listing 2–3. Multi-Page Template (ch2/multi-page.html)

<head>
 <meta charset="utf-8">
 <title>Multi Page Example</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" type="text/css" href="jquery.mobile-min.css" />
 <script type="text/javascript" src="jquery-min.js"></script>
 <script type="text/javascript">
 /* Shared scripts for all internal and ajax-loaded pages */
 </script>
 <script type="text/javascript" src="jquery.mobile-min.js"></script>
</head>

<body>

<!-- First Page -->
<div data-role="page" id="home" data-title="Home"> 1
 <div data-role="header">
 <h1>Welcome Home</h1>
 </div>

 <div data-role="content">
 Contact Us 2
 </div>
</div>

<!-- Second Page -->
<div data-role="page" id="contact" data-title="Contact">
 <div data-role="header">
 <h1>Contact Us</h1>
 </div>

 <div data-role="content">
 Contact information...
 </div>
 <script type="text/javascript">
 /* Page specific scripts here */ 3
 </script>
</div>

</body>

CHAPTER 2: Getting Started with jQuery Mobile 19

1. Each page in a multi-page document must contain a unique id. A page can have

a data-role of either page or dialog. When the multi-page document is initially

shown only the first page is enhanced and displayed. For example, when the

multi-page.html document is requested the page with id="home" will be shown

because it is the first page listed in the multi-page document. If you wanted to

request the page with id="contact" you would request the multi-page document

with the hash of the internal page you wanted displayed (multi-

page.html#contact). When a multi-page document loads only the initial page will

be enhanced and shown. Subsequent pages will be enhanced as they get

requested and cached within the DOM. This behavior is ideal for quick response

times. To set the title for each internal page, add the data-title attribute.

2. When linking to an internal page you must refer to it by page id. For example, the

href to link to the contact page must be set as href="#contact".

3. If you want to scope scripts to a specific page they must be placed within the

page container. This rule also applies to pages that get loaded via Ajax and we

will discuss this further in the next section. For example, any JavaScript declared

internally on multi-page.html#contact will not be accessible to multi-

page.html#home. Only the scripts of the active page will be accessible. However,

all scripts, including jQuery, jQuery Mobile, and your own custom scripts declared

within the parent document's head tag will be available to all internal and Ajax-

loaded pages.

Setting the Page Title of an Internal Page
It’s important to note that the title of an internal page will be set according to the
following order of precedence:

1. If a data-ti2–tle value exists, it will be used as the title for the internal page. For

example, the title for "multi-page.html#home" will be set to "Home".

2. If no data-title value exists, the header will be used as the title for the internal

page. For example, if no data-title attribute existed for "multi-page.html#home",

the title would be set to "Welcome Home", the value of its header tag.

3. Lastly, if neither a data-title nor header exists on the internal page the title

element within the head tag will be used as the title for the internal page. For

example, if no data-title attribute and no header existed for "multi-

page.html#home", the title would be set to "Multi Page Example", the value of the

parent document's title tag.

CHAPTER 2: Getting Started with jQuery Mobile 20

IMPORTANT: When linking to a page that contains multiple pages, you must add
rel="external" to its link.

<!-- Must include rel="external" when linking to multi-page documents -->

Home

<!-- May optionally use the target attribute -->

Home

This will perform a full-page refresh. It is required because jQuery Mobile cannot load a multi-
page document into the DOM of an active page. It would cause a namespace collision with how
jQuery Mobile leverages the URL hash (#). jQuery Mobile leverages the hash value to identify

internal pages within a multi-page document.

Additionally, because jQuery Mobile leverages the hash to identify unique pages within the DOM
it is not possible to leverage the anchor tag bookmark feature (index.html#my-bookmark).

jQuery Mobile treats my-bookmark as a page identifier, not a bookmark. Ajax-Driven Navigation

will be discussed in greater detail in the next section.

Single-Page versus Multi-Page Documents
You will need to identify page access trends to determine which strategy makes most
sense from a bandwidth and response time perspective. Multi-page documents will
consume more bandwidth on their initial load but they only require a single server
request and as a result their sub-pages are loaded with very fast response times. A
single-page document will consume less bandwidth per request but they require a
server request per page which results in much slower response times.

If you have several pages that are commonly accessed in sequence they make an ideal
candidate to load upfront within the same document. The initial bandwidth hit is slightly
higher but we achieve instant responses when accessing the next page. However, if the
probability is low that the user will access both pages then you should opt to keep the
files separate and achieve a lower bandwidth hit on the initial load.

There are tools available to help you collect page access trends and other metrics to
help optimize your page access strategy. For example, Google Analytics2 or Omniture3
are common analytic solutions for Mobile Web applications.

2 See http://www.google.com/analytics/.

3 See http://www.omniture.com/.

http://www.google.com/analytics/
http://www.omniture.com/

CHAPTER 2: Getting Started with jQuery Mobile 21

TIP: In most cases it is recommended to leverage the single-page model and dynamically
append popular pages to the DOM in the background. We can achieve this behavior by adding
the data-prefetch attribute to any link we want to dynamically load:

This hybrid approach allows us to selectively choose which links we want to load and cache.
Again, this pattern is only recommended for pages that are accessed very frequently because

this behavior will trigger an additional HTTP request to load the page dynamically.

Ajax-Driven Navigation
In the multi-page example above (see Listing 2–3) we saw how jQuery Mobile navigates
from one internal page to another. When the multi-page document was initialized, both
internal pages were already added to the DOM so the page transition from one internal
page to the other was extremely fast. When navigating from page to page we can
configure the type of transition to apply. By default, the framework will apply a "slide"
effect for all transitions. We will discuss transitions and the types of transitions we can
choose from later in the chapter.

<!-- Navigate to an internal page -->
<div data-role="content">
 Contact Us
</div>

The navigation model is different when a single-page transitions to another single-page.
For instance, we could extract the contact page from our multi-page into its own file
(contact.html). Now our home page (hijax.html) can access the contact page as a
normal HTTP link reference:

Listing 2–4. Ajax Navigation (ch2/hijax.html)

<div data-role="content">
 Contact Us
</div>

When clicking the "Contact Us" link above, jQuery Mobile will process that request as
follows:

1. jQuery Mobile will parse the href and load the page via an Ajax request (Hijax).

For a visual, refer to Figure 2–3. If the page is loaded successfully, it will be added

to the DOM of the current page.

CHAPTER 2: Getting Started with jQuery Mobile 22

Figure 2–3. jQuery Mobile Hijax Request

With the page successfully added to the DOM, jQuery Mobile will enhance the

page as necessary, update the base element’s @href, and set the data-url

attribute if it was not explicitly set.

2. The framework will then transition to the new page with the default “slide”

transition applied. The framework is able to achieve a seamless CSS transition
because both the "from" and "to" pages exist together in the DOM. After the

transition is complete, the page that is currently visible or active will be assigned

the "ui-page-active" CSS class.

3. The resulting URL is also bookmarkable. For example, if you want to deep link to

the contact page you may access it from its full path:

http://<host:port>/ch2/contact.html.

NOTE: As an added bonus, Ajax-based navigation will also produce clean URLs in browsers that
support HTML5's pushState. This feature is supported in the recent versions of desktop Safari,

Chrome, Firefox, and Opera. Android (2.2+) and iOS5 also support pushState. In browsers that
do not support this feature, the hash-based URLs (http://<host:port>/

hijax.html#contact.html) will be used to preserve the ability to share and bookmark URLs.

4. If any page fails to load within jQuery Mobile, a small error message overlay of

"Error Loading Page" will be shown and faded out (see Figure 2–4).

CHAPTER 2: Getting Started with jQuery Mobile 23

Figure 2–4. Error Loading Screen

$.mobile.changePage()
 The changePage function handles all the details of transitioning from

one page to another. You are allowed to transition to any page except
the same page. The complete list of available transition types are
shown in Table 2–1.

Usage
 $.mobile.changePage(toPage, [options])

Arguments
 toPage (string or jQuery collection). The page to transition to.

 toPage (string). A file URL ("contact.html") or internal element’s ID
("#contact").

 toPage (jQuery collection). A jQuery collection containing a page
element as its first argument.

 options (object). A set of key/value pairs that configure the
changePage request. All settings are optional.

 transition (string, default: $.mobile.defaultTransition).The
transition to apply for the change page. The default transition is
"slide".

 reverse (boolean, default: false). To indicate if the transition
should go forward or reverse. The default transition is forward.

 changeHash (boolean, default: true). Update the hash to the
page’s URL when page change is complete.

 role (string, default: "page"). The data-role value to be used
when displaying the page. For dialogs use "dialog".

 pageContainer (jQuery collection, default:
$.mobile.pageContainer). Specifies the element that should
contain the page after it is loaded.

CHAPTER 2: Getting Started with jQuery Mobile 24

 type (string, default: "get"). Specifies the method (“get” or
“post”) to use when making a page request.

 data (string or object, default: undefined). The data to send to an
Ajax page request.

 reloadPage (boolean, default: false). Force a reload of the page,
even if it is already in the DOM of the page container.

 showLoadMsg (boolean, default: true). Display the loading
message when a page is requested.

 fromHashChange (boolean, default: false). To indicate if the
changePage came from a hashchange event.

Example #1:

//Transition to the "contact.html" page.
$.mobile.changePage("contact.html");

<!-- Markup equivalent -->
Contact Us

Example #2:

// Go to an internal "#contact" page with a reverse "pop" transition.
$.mobile.changePage('#contact', { transition: "pop", reverse: true });

<!-- Markup equivalent -->

 Contact

Example #3:

/* Dynamically create a new page and open it */

// Create page markup
var newPage = $("<div data-role=page data-url=hi><div data-role=header>
 <h1>Hi</h1></div><div data-role=content>Hello Again!</div></div>");

// Add page to page container
newPage.appendTo($.mobile.pageContainer);

// Enhance and open new page
$.mobile.changePage(newPage);

CHAPTER 2: Getting Started with jQuery Mobile 25

IMPORTANT: Ajax navigation will not be used for situations where you load an external link:

<!-- Ajax navigation will be ignored when loading a page with a
rel="external" or target attribute -->
Home

<!-- Ajax navigation will be ignored -->
Home

Under these conditions, normal HTTP request processing will occur. Furthermore, CSS transitions

will not be applied. As mentioned earlier, the framework is able to achieve smooth transitions by
dynamically loading the "from" and "to" pages into the same DOM and then applying a smooth
CSS transition. Without Ajax navigation the transition will not appear as smooth and the default

loading message ($.mobile.loadingMessage) will not be shown during the transition.

Configuring Ajax Navigation
Ajax navigation is enabled globally but you can disable this feature if DOM size is a
concern or if you need to support a particular device that does not support hash history
updates (see Note below). By default, jQuery Mobile will manage the DOM size or cache
for us with only the “from” and “to” pages involved in the active page transition merged
into the DOM. To disable Ajax navigation set $.mobile.ajaxEnabled = false when binding
to the mobileinit event. For further information about configuring jQuery Mobile or
managing the DOM cache refer to Chapter 8.

NOTE: Ajax navigation has been disabled on platforms that have known conflicts with hash
history updates. For instance, jQuery Mobile has disabled Ajax navigation

($.mobile.ajaxEnabled = false) for BlackBerry 5, Opera Mini (5.0-6.0), Nokia
Symbian^3, and Windows Phone 6.5. These devices are more usable when browsing with

regular HTTP and full-page refreshes.

Transitions
jQuery Mobile has six CSS-based transition effects to choose from when transitioning
between pages. By default, the framework will apply a "slide" effect for all transitions.
We can set an alternate transition by adding the data-transition attribute to any link,
button, or form:

Show Dialog

The complete list of transition effects are described in Table 2–1:

CHAPTER 2: Getting Started with jQuery Mobile 26

Table 2–1. Transition Effects

Transition Common Usage

slide
The most common transition for moving between pages. This transition gives the
appearance of moving forward or backward in a flow of pages. This is the default
transition for all links.

slideup
A common transition for opening dialogs or showing additional information. This
transition gives the appearance that you need to collect additional input for the page
that is currently active.

slidedown This transition is the inverse of slideup but can be used for a similar effect.

pop
Another transition for opening dialogs or showing additional information. This
transition gives the appearance that you need to collect additional input for the page
that is currently active.

fade A common transition effect for entry or exit pages.

flip
A common transition for showing additional information. Typically, the back of a
screen displays configuration options (info icon) that do not need to be in the main UI.

none No transition will be applied.

The process of transitioning from page-to-page occurs in the following steps:

1. A user taps the button to navigate to the next page (see Figure 2–5).

2. The framework will load the next page with a Hijax request and add it to the DOM

of the current page. With both pages essentially side-by-side, a smooth transition

is ready to occur (see Figure 2–6).

3. The framework transitions to the next page (see Figure 2–7). This example uses

the default “slide” transition.

4. The next page is shown and the transition is complete (see Figure 2–8).

CHAPTER 2: Getting Started with jQuery Mobile 27

Figure 2–5. Step #1: Tap the button to navigate to another page

Figure 2–6. Step #2: Framework loads the next page side-by-side

CHAPTER 2: Getting Started with jQuery Mobile 28

Figure 2–7. Step #3: Framework transitions to next page

Figure 2–8. Step #4: Transition is complete

CHAPTER 2: Getting Started with jQuery Mobile 29

TIP: You can set a "backward" transition by adding data-direction="reverse" to your
links. A forward "slide" transition will slide left and conversely a reverse "slide" transition
will slide right. For instance, a reverse transition is applied by default when transitioning back in

history. However, if you have a "home" link on your header you will need to apply the data-
direction="reverse" attribute otherwise the default "forward" effect would occur:

<a href="home.html" data-icon="home" data-iconpos="notext"
 data-direction="reverse" class="ui-btn-right jqm-home">
 Home

Dialogs
Dialogs are similar to pages except their border is inset to give them the appearance of
a modal dialog. jQuery Mobile is quite flexible in regards to how we can style our
dialogs. We can create confirmation dialogs (see Figure 2–9), alert dialogs (see Figure 2–
10), and even action sheet styled dialogs (see Figure 2–11, Figure 2–12).

Figure 2–9. Confirmation Dialog (ch2/dialog.html) Figure 2–10. Alert Dialog (ch2/alert.html)

We can transform a page into a dialog at either the link or page component. On a link,
add the data-rel="dialog" attribute as shown in Listing 2–5. The addition of this
attribute will automatically load the target page and enhance it as a modal dialog.

CHAPTER 2: Getting Started with jQuery Mobile 30

Listing 2–5. Link-level transformation

<!-- Open a page as a dialog -->
Terms

<!-- The page remains unchanged. -->
<div data-role="page" id="terms">
 <div data-role="header">
 <h1>Terms and Conditions</h1>
 </div>

 <div data-role="content">
 Do you agree to these terms?

 <a href="#" data-role="button" data-inline="true"
 data-rel="back" data-theme="a">Disagree
 Agree
 </div>
</div>

We can also configure dialogs at the page container. Add the data-role="dialog"
attribute to the page container and when the component loads it will be enhanced as a
modal dialog (see Listing 2–6).

Listing 2–6. Page-level transformation (ch2/dialog.html)

<!-- Link without data-rel="dialog" attribute -->
Terms and Conditions

<!-- Configure this page to appear as a dialog -->
<div data-role="dialog" id="terms">
 <div data-role="header">
 <h1>Terms and Conditions</h1>
 </div>

 <div data-role="content" data-theme=”c”>
 Do you agree to these terms?

 <a href="#" data-role="button" data-inline="true"
 data-rel="back" data-theme="a">Disagree
 Agree
 </div>
</div>

NOTE: Any link with data-rel="dialog" or any page with data-role="dialog" will not
appear in history and cannot be bookmarked. For example, if you navigate to a dialog, close the
dialog and then tap the browser's forward button, you will not go forward to the dialog because it

will not exist in history.

CHAPTER 2: Getting Started with jQuery Mobile 31

Link versus Page Configuration
With two options available for opening dialogs, which should we choose? I prefer the
page configuration (data-role="dialog") because it allows us to configure the dialog
once at the page container and the buttons that navigate to our dialog require zero
modifications. For example, if we have three buttons linking to our dialog, the page-
based configuration only requires one modification. Whereas a link-based configuration
would require three changes, one to each button.

The jQuery Mobile dialog API also exposes a close method that you may leverage when
programmatically working with dialogs. For example, if we wanted to programmatically
handle the processing of the "Agree" button in Figure 2–9, we could handle the click
event, process any necessary business logic, and close the dialog when complete:

function processAgreement(){
 // Save the agreement...

 // Close the dialog
 $('.ui-dialog').dialog('close');
}

Action Sheets
In addition to the traditional dialog we can also style our dialog as an action sheet
(see Figures 2–11 and 2–12). Simply remove the header, add minor styling updates
(see Listing 2–7) and your dialog appears as an action sheet. Action sheets are
commonly used to solicit a response from the user. For the best user experience, it
is recommended to use the slidedown transition for an action sheet. Conveniently,
when dialogs close they automatically apply the reverse transition. For example,
when you close this action sheet the reverse slideup transition will be applied.

CHAPTER 2: Getting Started with jQuery Mobile 32

Figure 2–11. Action Sheet #1 Figure 2–12. Action Sheet #2
(ch2/action-sheet1.html) (ch2/action-sheet2.html)

Listing 2–7. Action Sheet (ch2/action-sheet1.html)

<!-- Logout link -->
Logout

<!-- Create an action sheet by simply removing the header! -->
<div data-role="dialog" id="logout">
 <div data-role="content">
 Are you sure?

 Yes, I'm Sure!
 No Way!
 </div>
 <style>
 span.title { display:block; text-align:center;
 margin-top:10px; margin-bottom:20px; }
 </style>
</div>

This is also our first exposure to the data-theme attribute. We can simply add contrast
and style to all jQuery Mobile components with this attribute. In our dialog examples, we
can set the theme of our background and buttons. When styling dialog buttons it is
common to contrast the style of the cancel and action buttons. Themes within jQuery
Mobile are discussed in greater depth in Chapter 7.

CHAPTER 2: Getting Started with jQuery Mobile 33

Dialog UX Guidelines
Consistency is the most important design goal when styling your UI components. In
regards, to dialog-specific guidelines a few tips from Apple's Mobile Interface
Guidelines4 include:

TIP: Dialogs have a their maximum width set to 500 pixels by default. This will appear full
screen on smaller mobile displays and will appear 500 pixels wide on desktop and tablet

screens. If you need to override the default width use the following CSS in your theme:

.ui-dialog .ui-header, .ui-dialog .ui-content, .ui-dialog .ui-footer {

max-width: 100%; }

Alerts:
 Prefer alerts to display important information that affects the use of the

application (see Figure 2–10). An alert is not user initiated.

 Alert buttons are either colored light or dark. For a single-button alert
the button is always light-colored. For a two-button dialog, the left
button is always dark and the right button is always light (see Figure 2–
9).

 In a two-button dialog that proposes a favorable action that people are
likely to choose, the button that cancels the action should be on the
left and dark-colored (see Figure 2–9).

 In a two-button dialog that proposes a potentially risky action (delete),
the button that cancels the action should be on the right and light-
colored. Often buttons that perform risky actions are red.

Action Sheets:
 Prefer action sheets to gather confirmation of user-initiated tasks (see

Figure 2–11). Action sheets may also be used to provide the user a
range of choices for their current task (see Figure 2–12).

 An action sheet always contains at least two buttons that allow the
user to choose how to complete their task.

4 See http://developer.apple.com/library/ios/documentation/userexperience/
conceptual/mobilehig/MobileHIG.pdf.

http://developer.apple.com/library/ios/documentation/userexperience/

CHAPTER 2: Getting Started with jQuery Mobile 34

 Include a cancel button to allow users to abandon the task. The cancel
button is placed at the bottom of the action sheet to encourage users
to read through all options before making a choice. The cancel button
color should correspond to the color of the background.

Responsive Layouts with Media Queries
To create responsive designs with jQuery Mobile it is recommended to leverage the
power of CSS3 Media Queries.5 For example, if you need to enhance your layout for a
particular device orientation you can detect the orientation of the device with media
queries and apply your CSS modifications as necessary:

@media (orientation: portrait) {
 /* Apply portrait orientation enhancements here... */
}

@media (orientation: landscape) {
 /* apply landscape orientation enhancements here... */
}

In certain situations, jQuery Mobile will create responsive designs for you. The
following figures show how well jQuery Mobile’s responsive design behaves with form
field positioning in portrait versus landscape mode. For instance, in the portrait view
(see Figure 2–13) the labels are positioned above the form fields. Alternatively, when
repositioning the device in landscape (see Figure 2–14) the form fields and labels
appear side-by-side. This responsive design provides the most usable experience
based on the devices available screen real estate. jQuery Mobile provides many of
these good UX principles for you!

5 See http://www.w3.org/TR/css3-mediaqueries/.

http://www.w3.org/TR/css3-mediaqueries/

CHAPTER 2: Getting Started with jQuery Mobile 35

Figure 2–13. Responsive (portrait) Figure 2–14. Responsive (landscape)

WARNING: If you launch Figure 2–14 (ch2/responsive.html) in iOS and switch to landscape
you may have noticed there is an iOS scaling issue in Mobile Safari.6 “When the meta viewport
tag is set to content="width=device-width, initial-scale=1", or any value that
allows user-scaling, changing the device to landscape orientation causes the page to scale larger

than 1.0. As a result, a portion of the page is cropped off the right, and the user must double-tap
(sometimes more than once) to get the page to zoom properly into view.”

Until this issue is resolved in Mobile Safari you have several options to remedy the issue:

 You can disable zoom. Although, disabling zoom is a practice you will want to do sparingly
 because it breaks accessibility.

 <meta name="viewport" content="width=device-width,

 minimum-scale=1.0, maximum-scale=1.0">

 You can dynamically adjust the meta tag when the user zooms.7

6 See http://filamentgroup.com/examples/iosScaleBug/.

7 See http://adactio.com/journal/4470/.

http://filamentgroup.com/examples/iosScaleBug/
http://adactio.com/journal/4470/

CHAPTER 2: Getting Started with jQuery Mobile 36

In the examples above (see Figure 2–13) jQuery Mobile is able to apply responsive
designs by leveraging the min-max width media features. For example, form elements
float beside their labels when the browser supports a width greater than 450 pixels. The
CSS to support this behavior for text inputs looks like this:

label.ui-input-text {
 display: block;
}

@media all and (min-width: 450px){
 label.ui-input-text { display: inline-block; }
}

IMPORTANT: Windows Phone 7 (Internet Explorer 8 and below) does not support media queries.
If you would like to support responsive designs on browsers that do not support media queries it

is recommended to leverage Respond.js.8 Respond.js provides media query support for browsers

that do not support them.

There is also a limited set of Webkit-specific media extensions you may find useful. For
example, to apply CSS enhancements for newer iOS devices with a high-definition retina
display you may use the webkit-min-device-pixel-ratio media feature:

//Webkit-specific media query for the iOS high-resolution Retina display @media screen
and (-webkit-min-device-pixel-ratio: 2){
 // Apply retina display enhancements
}

As an added bonus for the iOS users, jQuery Mobile has included a full set of retina-
optimized icons that are automatically applied to any iOS device with a very high-
resolution display.

NOTE: If you choose to segregate your media-specific styles in separate files you can reference
them with the HTML <link> media attribute. This practice promotes good separation of concerns
but suffers from a performance perspective because each separate file requires an additional
HTTP request:

<link href="default.css" />

<link media="all and (min-width:450px)" href="widescreen.css" />

8 See https://github.com/scottjehl/Respond.

https://github.com/scottjehl/Respond

CHAPTER 2: Getting Started with jQuery Mobile 37

Summary
In this chapter, we reviewed the basics of jQuery Mobile and saw how quickly we can
get up and running with a jQuery Mobile application. We reviewed both jQuery Mobile
page templates and discussed the advantages of each in regards to performance and
navigation flow. We also took a peek under the hood to see how jQuery Mobile
enhances our semantic markup into an optimized mobile experience. Additionally, we
reviewed all available page transitions and discussed common usage patterns for each.
Lastly, we saw the many different ways of styling dialogs to create an effective interface
for informing or gathering feedback from our users. In Chapter 3 we will take a closer
look at navigating with jQuery Mobile and how we can best utilize our header and footer
controls to manage our mobile applications data.

39

 Chapter

Navigating with Headers,
Toolbars, and Tab Bars
All mobile applications need toolbars to help navigate or manage data on the screen. In

this chapter we will review the jQuery Mobile components that provide these features.

The main components are headers and footers. Headers are commonly used to display

the page title and may optionally include controls to help navigate or manage objects on

the screen. Footers are designed similarly to headers but their responsibility is typically

managed with a toolbar or tab bar. Additionally, we will discover the capabilities of a

segmented control. A segmented control is a specialized control we may position in our

header or footer to help display alternate views of data. We will explore each of these

components and demonstrate how you can style them with text, standard icons, and

even customized icons.

Header Bar
The header bar displays the title of the current screen. Additionally, you can add buttons

for navigation or add controls that manage items in the page. Although the header is

optional, it is commonly used to provide a title for the active page. Let’s begin by

reviewing the header structure and look at how we can add additional controls to the

header to help manage items on the page.

Header Basics
There are a few points of importance about the header. They include:

 The header is defined with the data-role="header" attribute.

 The header is an optional component.

 The back button will not be shown in the header unless you explicitly

enable it. The back button is discussed in detail in the next section.

3

4

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 40

 You may adjust the theme of the header with the data-theme attribute.

If no theme is set for the header it will inherit the theme from the page

component. The default theme is black (data-theme="a").

 All heading levels (H1-H6) are styled identically by default to maintain

visual consistency.

 You can make the header fixed with the addition of the data-
position="fixed" attribute.

TIP: You may also use the header as a segmented control as shown in Figure 3–5. A segmented

control allows the user to display different views of related data.

Header Structure
The basic usage of a header is to simply display the title of the active page. A header in

its simplest form is shown below.

<div data-role="header">
 <h1>Header Title</h1>
</div>

Header Positioning
There are three styles available for positioning the header. They include:

 Default: A default header will be shown at the top edge of the screen

and will slide out of view when you scroll.

<div data-role="header">
 <h1>Default Header</h1>
</div>

 Fixed: A fixed header will always remain positioned and visible at the

top edge of the screen. However, during a scroll event the header will

disappear until the scroll is finished. We can create a fixed header with

the addition of the data-position="fixed" attribute.

<div data-role="header" data-position="fixed">
 <h1>Fixed Header</h1>
</div>

NOTE: In order to achieve true fixed toolbars, a browser needs to either support position:fixed or
overflow:auto. Fortunately, new releases of WebKit (iOS5) are beginning to support this behavior.

In jQuery Mobile, we can enable this behavior by setting the touchOverflowEnabled
configuration option to true (see "Configurable jQuery Mobile Options" in Chapter 8 for more

details).

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 41

 Responsive: When we create a fullscreen page the contents will

appear edge-to-edge and the header and footer will responsively

appear and disappear based on a touch response. Fullscreen mode is

a useful scenario for photo or video displays. To create a fullscreen

page add data-fullscreen="true" to the page container and include

the data-position="fixed" attribute on the header and footer

elements (see Listing 3–1). For instance, in Figure 3–1 we have a

fullscreen page that displays a photo. If a user taps the screen, the

header and footer will responsively appear and disappear (see Figure

3–2). In this example, we have a photo viewer with the header showing

the counter of our image deck and the footer displays a toolbar to help

navigate, email, or delete images.

Listing 3–1. Fullscreen (ch3/position-fullscreen.html)

<div data-role="page" data-fullscreen="true">
 <div data-role="header" data-position="fixed">
 <h3>Header</h3>
 </div>

 <div data-role="content">
 <!-- Fullscreen content -->
 </div>

 <div data-role="footer" data-position="fixed">
 <h3>Footer</h3>
 </div>

Figure 3–1. Fullscreen

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 42

Figure 3–2. Fullscreen with responsive header and footer

NOTE: The browsers URL bar will be hidden in iOS and Android when viewing jQuery Mobile

pages. This is a convenient feature that allows the user to view more available screen real estate
and it smooths out the transitions. However, if you need to view the URL bar, drag the page down

and the URL bar will become visible.

Header Buttons
There are situations when you will need to add controls to the header to help manage

the screen contents. For example, save and cancel buttons are common controls that

are available when editing data. There are three styles of buttons you may add to a

header. They include:

 A button with only text.

 A button with only an icon (see Figure 3–4). An icon-only button

requires the addition of two attributes: data-icon and data-
iconpos="notext". For the complete listing of data-icon values refer to

Table 4-1.

 A button with text and an icon (see Figure 3–3). This button also

requires the data-icon attribute. Examples of each are shown here:

<!-- A button with only text -->
Done

<!-- A button with only an icon -->

<!-- A button with text and an icon -->
Done

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 43

Buttons with Text and Icons
In Figure 3–3, we have a header with a "Cancel" and a "Done" button to help manage

the entry of a movie review. As shown in Listing 3–2, the button is styled as an ordinary

link. We also attached an icon to each button with the data-icon attribute. To create a

text-only button simply remove the data-icon attribute. Within a header, buttons are

positioned according to their semantic order. For example, the first button will be left-

aligned and the second button will be right-aligned. If your header only contains a single

button you can right-align the button by adding class="ui-btn-right" to the button's

markup.

Listing 3–2. Header Buttons (ch3/header-buttons.html)

<div data-role="header" data-position="inline">
 Cancel
 <h1>Add Review</h1>
 Done
</div>

Figure 3–3. Header with buttons

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 44

Buttons with Only Icons
jQuery Mobile includes several standard icons (see Table 4-1) that you may use to

create icon-only buttons. For instance, the "info" icon is commonly used with a "flip"

transition to display configuration options or more information. The use of standard

icons consumes very little real estate and their meaning is relatively consistent across all

devices. For instance, if we wanted to add an item to an existing list we may choose to

show a "plus" icon that allows users to add an entry to the list (see Figure 3–4). In this

example we have a listing of movie reviews and users can tap the "add" icon to create

their review. To create an icon-only button, two attributes are required as shown in

Listing 3–3.

Listing 3–3. Header with Icon (ch3/header-icons.html)

<div data-role="header">
 <h1>Reviews</h1>

</div>

Figure 3–4. Header with icon

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 45

Header bar with a segmented control
A segmented control is an inline set of controls that each display a different view. For

example, the segmented control in Figure 3–5 shows movies by a specific category. This

segmented control allows users to quickly view movies by the category of their choice:

In Theatres, Coming Soon, or Top Rated.

Figure 3–5. Segmented Control

It is recommended to position the segmented control within the main header as shown

in Listing 3–4. This positioning allows the segmented control to integrate seamlessly

with the main header if you choose to position the header as a fixed control. With the

addition of a few minor styling updates we now have a segmented control that will allow

users to quickly view data in alternate views!

Listing 3–4. Segmented Control (ch3/header-segmented-control.html)

<div data-role="header" data-theme="b" data-position="fixed">
 <h1>Movies</h1>
 <div class="segmented-control ui-bar-d">

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 46

 <div data-role="controlgroup" data-type="horizontal">

 In Theatres

 Coming Soon

 Top Rated

 </div>
 </div>
</div>

<style>
 .segmented-control { text-align:center;}
 .segmented-control .ui-controlgroup { margin: 0.2em; }
 .ui-control-active, .ui-control-inactive {
 border-style: solid; border-color: gray; }
 .ui-control-active { background: #BBB; }
 .ui-control-inactive { background: #DDD; }
</style>

Fixing a Truncated Header or Footer...
jQuery Mobile will truncate headers and footers with long titles (see Figure 3–6). When

the text is too long jQuery Mobile will truncate the text and add an ellipsis to the end. If

you encounter this situation and want to show the complete text (see Figure 3–7) you

can adjust the CSS selector to remedy the issue as shown in Listing 3–5.

Listing 3–5. Truncation Fix (ch3/truncation-fixed.html)

.ui-header .ui-title, .ui-footer .ui-title {
 margin-right: 0 !important; margin-left: 0 !important;
}

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 47

Figure 3–6. Truncation Issue

Figure 3–7. Truncation Fix

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 48

Back Button
Back buttons (see Figure 3–8) can generate great debates among UX designers. Should

we add our own back buttons or should we leverage the hardware/software back

buttons available on some devices and all browsers? Fortunately, jQuery Mobile offers

you the choice of automatically enabling or disabling them globally. You also have the

option of adding or removing them on a page-by-page basis.

Figure 3–8. Back button must be explicitly enabled.

The back button is disabled by default within jQuery Mobile. If you need the back button

to appear within the header you have several options for adding them:

 You can add the back button to a specific page by adding data-auto-
back-btn="true" on the page container.

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 49

 You can globally enable the back button by setting the addBackBtn

option to true when binding to the mobileinit option. After setting this

option, the back button will appear automatically if a page exists in the

history stack. Under the covers, a back button simply executes

window.history.back(). As shown below, you may also override the

default back button text and theme. For instance, it is common to label

back buttons with the title of the previous page. The data-back-btn-
text attribute can be used for this convention. For additional details on

setting global configuration options refer to Chapter 8, Configuring

jQuery Mobile.

<!-- Show the back button and override the default back button text -->
<div data-role="page" data-add-back-btn="true"
 data-back-btn-text="Previous">

// Globally enable the back button, set the default back button text,
// and set back button theme
$(document).bind('mobileinit',function(){
 $.mobile.page.prototype.options.addBackBtn = true;
 $.mobile.page.prototype.options.backBtnText = "Previous";
 $.mobile.page.prototype.options.backBtnTheme = "b";
});

Furthermore, if you enabled the back button globally, you can choose to disable the

back button on specific pages by adding the data-add-back-btn="false" attribute on

the page header. This will remove the back button from the header of specific pages.

<!-- Disable the back button on a specific page if we globally enabled it -->
<div data-role="header" data-add-back-btn="false">

TIP: Although back buttons are available in all mobile browsers there are a few specific cases
within jQuery Mobile where you explicitly may need back buttons or alternative navigation:
■ It is recommended for all pages to include a link back to the home screen, either via a linked

logo or home button. The goal is to never leave the user at a dead end within their navigation
flow. A common scenario may arise when a user accesses a deep link or bookmarked page. If
your only navigation mechanism is the back button and the history stack is empty the automatic

back button will not appear, leaving the user at a dead end. Therefore, it is a very good practice
to include a home icon link on the right side of the header bar.
■ When designing for PhoneGap integration you will need to consider the use of back buttons

if your target OS does not support hardware-based navigation like iOS or WebOS.

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 50

Back Linking
If you want to create a button that behaves similarly to a back button you can add data-
rel="back" to any anchor element:

Go Back

With data-rel="back", the link will mimic the back button, going back one history entry

(window.history.back()) and ignoring the link's default href. For C-Grade browsers or

browsers with no JavaScript support the data-rel will be ignored and the href attribute

will be used as a fallback.

Footer bar
The footer component is nearly identical to the header with only minor differences. The

main difference is the footer is more flexible in regards to the placement of its buttons.

For example, when working with the header the first button was left-aligned and the

second button was right-aligned. The footer positions its buttons inline and in sequential

order from left to right. This flexibility allows us to style our footer as a toolbar or tab bar.

We will see examples of both but first let's begin with the basics.

Footer Basics
There are a few points of importance about the footer. They include:

 The footer is defined with the data-role="footer" attribute.

 The footer positions its buttons inline and in sequential order from left

to right. This allows for the flexibility to create toolbars and tab bars.

 The footer is an optional component.

 You may adjust the theme of the footer with the data-theme attribute. If

no theme is set for the footer it will inherit the theme from the page

component. The default theme is black (data-theme="a").

 You can make the footer fixed with the addition of the data-
position="fixed" attribute.

 All footer levels (H1-H6) are styled identically by default to maintain

visual consistency.

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 51

Footer Structure
The footer in its simplest form is shown in the code below. The data-role="footer" is

the only required attribute. Within the footer, you may include any semantic HTML.

Footers are commonly used to contain toolbar and tab controls. A toolbar provides a set

of actions users can take in the current context. And a tab bar gives users the ability to

switch between different views within the application.

<div data-role="footer">
 <!-- Add footer text or buttons here -->
</div>

TIP: To position the footer at the very bottom of the screen, add data-position="fixed" to
the footer element. A default footer is positioned after the content and not at the bottom edge of
the screen (see Figure 3–9). For instance, if your content only consumed half the screen height

the footer would appear in the middle of the screen. We can position the footer at the bottom of
the screen by adding data-position="fixed" to the footer element.

<div data-role="footer" data-position="fixed">

Figure 3–9. Default footer position

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 52

Footer Positioning
The three styles of positioning for the header also apply to the footer. They include:

 Default: A default footer is positioned after the content section. For

instance, if your content extends beyond the height of your viewport

the footer will not be shown until you scroll to the end of the content.

<div data-role="footer">
 <!-- Default footer -->
</div>

 Fixed: A fixed footer, will always remain positioned and visible at the

bottom edge of the screen. However, during a scroll event the footer

will disappear until the scroll is finished. We can create a fixed footer

with the addition of the data-position="fixed" attribute.

<div data-role="footer" data-position="fixed">
 <h3>Fixed Footer</h3>
</div>

 Responsive: When we create a fullscreen page the contents will

appear edge-to-edge and the header and footer will responsively

appear and disappear based on a touch response. Fullscreen mode is

a useful scenario for photo or video displays. To create a fullscreen

page add data-fullscreen="true" to the page container and include

the data-position="fixed" attribute on the header and footer

elements. For an example refer to Figure 3–1.

Footer Buttons
There are three styles of buttons you may add to a footer. They include:

 A button with only text. This style of button works well within a toolbar

because a toolbar's appearance is not as large as a tab bar. A normal

link within the footer will display as a text-only button:

Sync

 A button with only an icon. This style of button also works well within a

toolbar. An icon-only button requires the addition of two attributes,

data-icon and data-iconpos="notext":

 For the complete listing of data-icon values refer to Table 4-1.

 A button with text and an icon. This style of button works well within a tab bar:

Home

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 53

TIP: jQuery Mobile is an excellent framework for building applications that display responsively
across mobile, tablet, and desktop browsers. While the header and footer components provide a
"native" feel on mobile devices they translate poorly when viewed on the desktop. If your jQuery

Mobile application is targeted for a diverse set of browser sizes you may prefer to omit the
header and footer components. As an alternative, you may find it more beneficial to add custom

header or footer markup directly within the content section.

Toolbars
Toolbars help manage the contents of the current screen. For instance, mail apps often

use toolbars to help manage your email. In situations where users need to perform

actions related to objects on the current screen a toolbar provides a useful experience.

When building a toolbar we have the option of using icons or text. In our examples

below we will view toolbar examples that contain buttons styled with icons, text, and a

segmented control.

Toolbar with Icons
Icon-only toolbars are most common. Their primary advantage is they consume less

screen real estate when compared to a textual alternative. When selecting icons it is

important to choose standard icons that express clear meaning. In Figure 3–10 we have

a screen that displays a movie review. To help the user manage the review we also

included a toolbar with standard icons. The toolbar allows the user to perform five

Figure 3–10. Toolbar with standard icons possible actions:

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 54

1. Navigate to the prior review.

2. Reply to the review with a comment.

3. Mark the review as a favorite.

4. Add a new review for the movie.

5. Navigate to the next review.

Creating the toolbar requires minimal markup (see Listing 3–6). We simply need an

unordered list of buttons wrapped in a div with the data-role="navbar" attribute. The

toolbar buttons are flexible and will be evenly spaced according to the width of the

device. In this example we used icons from jQuery Mobile’s standard suite of available

icons (see Table 4-1).

Listing 3–6. Toolbar (ch3/toolbar-icons-standard.html)

<div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 </div>
</div>

TIP: The navbar component works equally well with custom icons if you want to style your
navbars with added flare! If interested in the custom icon solution, we will demonstrate that

solution in Listing 3–10.

Toolbar with a Segmented Control
You can also put a segmented control in a toolbar to give users access to different

perspectives of your application’s data or to different application views. In Figure 3–11

we positioned our segmented control within the toolbar to allow users to display

different views of their calendar data. As you may have noticed, this segmented control

(see Listing 3–7) is identical to the segmented control example shown in our header

example. We can reuse the segmented control across both our header and footer

components. The segmented control is simply a set of buttons wrapped within a control

group and styled according to your needs. In the next section we will show yet another

usage of the segmented control with a tab bar!

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 55

Figure 3–11. Toolbar with Segmented Control

Listing 3–7. Toolbar with Segmented Control (ch3/toolbar-segmented-control.html)

<!-- Toolbar with a segmented control -->
<div data-role="footer" data-position="fixed" data-theme="d"
 class="segmented-control">
 <div data-role="controlgroup" data-type="horizontal">
 List
 Day
 Month
 </div>
</div>

<style>
 .segmented-control { text-align:center; }
 .segmented-control .ui-controlgroup { margin: 0.2em; }
 .ui-control-active, .ui-control-inactive { border-style: solid;
 border-color: gray; }
 .ui-control-active { background: #BBB; }
 .ui-control-inactive { background: #DDD; }
</style>

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 56

Tab Bars
We can also style our footer as a tab bar. A tab bar gives users the ability to switch

between different views within the application. If you are not too familiar with tab bars

their behavior is very similar to tab-based navigation you find on the Web. Tab bars are

commonly positioned as a persistent footer at the bottom edge of the screen that

remains accessible from every location in the application. Tab bars typically contain

buttons that display both an icon and text for clarity. In the examples below we will look

at three styles of tab bars. The first tab bar example will include several of the standard

icons that are already available within jQuery Mobile. Secondly, we will see a tab bar

example that uses custom icons. jQuery Mobile conveniently allows integration with

custom icons of your choice. And lastly, we will combine our tab bar and our segmented

control within the same UI to allow the user to navigate and view alternate forms of data

from the same screen.

Tab Bar with Standard Icons
The simplest tab bar solution (see Figure 3–12) is one that uses jQuery Mobile’s

standard icon set, as detailed in Listing 3–8. For the complete listing of standard jQuery

Mobile icons refer to Table 4-1. If you leverage these standard icons your tab bar will

require no extra styling.

Figure 3–12. Tab bar with standard Icons

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 57

Listing 3–8. Tab bar with standard icons (ch3/tabbar-icons-standard.html)

<!-- tab bar with standard icons -->
<div data-role="footer" data-position="fixed">
 <div data-role="navbar">

 Home

 Movies
 Theatres

 </div>
</div>

Persistent Tab Bar
In order to make our tab bars persistent we need to add an additional attribute to the

footer. To keep the footer persistent during a page transition add the data-id attribute to

the footer of each tab bar and set their values to the same identifier. For instance, in

Listing 3–9, each tab bar contains an identifier of data-id="main-tabbar". With this

addition, your tab bar will remain persistent during a transition. For example, if we

tapped on an inactive tab bar the screen would "slide" while the tab bar remains in a

fixed and persistent state during the transition. Additionally, to retain the active state of

each tab bar when transitioning from tab to tab add a class of ui-state-persist along

with ui-btn-active. The markup for persistent tab bars is highlighted below.

Listing 3–9. Persistent tab bars

<!-- Movies tab bar -->
<div data-role="footer" class="tabbar" data-id="main-tabbar"
 data-position="fixed">
 <div data-role="navbar" class="tabbar">

 <a href="tabbar-movies.html"
 class="ui-btn-active ui-state-persist">Movies
 Theatres

 </div>
</div>

<!-- Theatres tab bar -->
<div data-role="footer" class="tabbar" data-id="main-tabbar"
 data-position="fixed">
 <div data-role="navbar" class="tabbar">

 Movies
 <a href="tabbar-theatres.html"
 class="ui-btn-active ui-state-persist">Theatres

 </div>
</div>

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 58

Tab Bar with Custom Icons
Looking to add custom icons to your tab bars or toolbars? jQuery Mobile supports the

addition of custom icons with minimal markup necessary. For example, in the tab bar

example below (see Figure 3–13) we included several third-party icons from Glyphish.1

Figure 3–13. Tab bar with custom Icons

To support the addition of custom icons we need the addition of the data-
icon="custom" attribute, some custom styling for positioning, and the id reference to

associate each button with its style. These additions are highlighted in Listing 3–10

below.

1
 See http://glyphish.com/. Icons by Joseph Wain and licensed under the Creative

Commons Attribution 3.0 United States License.

http://glyphish.com/

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 59

TIP: This custom icon solution works equally well with toolbars too. In fact, by simply removing

the text from the buttons creates a slim toolbar with custom icons!

Listing 3–10. Tab bar with custom icons (ch3/tabbar-icons-custom.html)

<!-- tab bar with custom icons -->
<div data-role="footer" class="ui-navbar-custom" data-position="fixed">
 <div data-role="navbar" class="ui-navbar-custom">

 Home
 <a href="#" id="movies" data-icon="custom"
 class="ui-btn-active">Movies
 Theatres

 </div>
</div>

<style>
 .ui-navbar-custom .ui-btn .ui-btn-inner {
 font-size: 11px!important;
 padding-top: 24px!important;
 padding-bottom: 0px!important;
 }
 .ui-navbar-custom .ui-btn .ui-icon {
 width: 30px!important;
 height: 20px!important;
 margin-left: -15px!important;
 box-shadow: none!important;
 -moz-box-shadow: none!important;
 -webkit-box-shadow: none!important;
 -webkit-border-radius: none !important;
 border-radius: none !important;
 }
 #home .ui-icon {
 background: url(../images/53–house-w.png) 50% 50% no-repeat;
 background-size: 22px 20px;
 }
 #movies .ui-icon {
 background: url(../images/107-widescreen-w.png) 50% 50% no-repeat;
 background-size: 25px 17px;
 }
 #theatres .ui-icon {
 background: url(../images/15-tags-w.png) 50% 50% no-repeat;
 background-size: 20px 20px;
 }
</style>

Tab Bar with a Segmented Control
At this point we have seen examples of tab bars and segmented controls. How about

merging the two together! We can utilize the persistent tab bar to help navigate our site

and we can leverage the segmented control to display different views of our data. In the

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 60

example below (see Figure 3–14) we have created a UI that allows the user to navigate

between a home, movies, and theatres tab. When the user selects the movies tab we

display the segmented control within the header to allow the user to help filter their

movie listings. In this example we have completely removed the header text because the

active tab highlights the title of our page. For the complete source code listing of this

example, refer to ch3/tabbar-and-segmented-control.html.

Figure 3–14. Tab bar with a segmented control

Summary
In this chapter, we uncovered nearly every header and footer combination possible

within jQuery Mobile. jQuery Mobile has an abundant set of components that greatly

simplify navigation and data management requirements. We saw tab bar solutions that

provide the ability to switch between different views within the app. We reviewed several

toolbar configurations that help manage objects on the current screen. And we added

segmented controls to give users access to different perspectives of application data.

Additionally, each component is flexible in regards to their appearance. Each

CHAPTER 3: Navigating with Headers, Toolbars, and Tab Bars 61

component is themable and we can style our buttons with icons, text, or a combination

of both. In the next chapter, we will review all possible button styling options and also

look at the components we may use for form-based development within jQuery Mobile.

63

 Chapter

Form Elements and
Buttons
Mobile applications must support an efficient user experience. For this reason, it is rare

to see mobile apps with numerous form fields. In fact, the less interaction our apps

require of our users, the more efficient both the users and the apps will become. The

mobile Web is slowly adopting device APIs1 that allow developers to collect an

abundance of information with minimal user interaction. For instance, 74% of mobile

developers are using Geolocation within their apps2. Geolocation allows us to gather the

user's country, state, city, zip code, and address information with the simple tap of an

acknowledgement button. Although these device APIs are making the user experience

more efficient, for users whose devices don't support geolocation, we still need to

capture data the traditional way with form fields.

In this chapter, we will start with the most popular mobile UI component, the button.

Buttons can be styled and configured in many ways. We will see examples of buttons

styled with text, icons, and a combination of both.

Next, we will take a detailed look at every standard HTML form component and identify

common use cases they solve really well. You will be pleasantly surprised that each

form component is automatically optimized by jQuery Mobile—a feature that

conveniently provides a unified user experience across all devices. We will also review

the jQuery Mobile data attributes that are unique to each form element, and see code

examples in which we modify these attributes to configure and style our forms.

Furthermore, we will review the plugins that are associated with each form component

and see how we can leverage the plugin API to dynamically create, enhance, and update

our own components when users require a more dynamic experience.

1 See http://www.w3.org/2009/dap/.

2 See http://www.webdirections.org/sotmw2011/.

4

http://www.w3.org/2009/dap/
http://www.webdirections.org/sotmw2011/

CHAPTER 4: Form Elements and Buttons 64

Lastly, we will explore the features of the Mobiscroll plugin, which provides an elegant

and flexible interface for date pickers, search filters, or custom lists.

Buttons
Buttons are the most commonly used control within mobile apps because they provide a

very efficient user experience. We have already seen buttons used in many examples,

including our dialogs, action sheets, segmented controls, and header. jQuery Mobile

buttons come in many flavors. We have link buttons, form buttons, image buttons, icon-

only buttons, and buttons combined with text and icons. As expected, jQuery Mobile

buttons are all styled consistently. Whether you have a link button or a form-based

button, the framework will style them identically. As we review these buttons we will also

identify common use cases for each type of button.

Link Buttons
Link buttons are the most commonly used type of button. Whenever you need to style an

ordinary link as a button, add the data-role=”button” attribute to the link (see Figure 4–1).

Figure 4–1. Link buttons

By default, buttons within the content section of a page are styled as block-level

elements so they will fill the entire width of their outer container. However, if you want a

more compact button that is only as wide as the text and icons inside, add the data-
inline="true" attribute (see Listing 4–1).

Listing 4–1. Link buttons (ch4/link-buttons.html)

Link button
Disagree
Agree

CHAPTER 4: Form Elements and Buttons 65

NOTE: If you want buttons to sit side-by-side and consume the entire width of the screen, use a
2-column grid. We will explore flexible grid layouts in more detail in Chapter 6. Specifically, for a

2-column grid layout refer to Listing 6-2.

Form Buttons
Form-based buttons (see Listing 4–2) are actually easier to style than link-based buttons

because no modifications are required on your part. For simplicity, the framework

automatically converts any button or input element into a mobile-styled button for you

(see Figure 4–2).

Listing 4–2. Form buttons (ch4/form-buttons.html)

<button type="submit">Button element</button>
<input type="button" value="button" />
<input type="submit" value="submit" />
<input type="reset" value="reset" />

Figure 4–2. Form buttons

TIP If you want to disable the automatic initialization of form buttons or any other control, you

may add the data-role=”none” attribute to the element and jQuery Mobile will not enhance
the control:

<button data-role=”none”>Button element</button>

Image Buttons
Styling images as buttons requires minimal effort on your part. When wrapping an image

with an anchor tag, no modifications are necessary (see Figure 4–3 and its related code

in Listing 4–3). However, when attaching an image to an input element you will need to

add the data-role="none" attribute.

CHAPTER 4: Form Elements and Buttons 66

Figure 4–3. Image buttons

Listing 4–3. Image buttons (ch4/image-buttons.html)

<!-- Image buttons -->
<input type="image" src="cloud.png" data-role="none" />

Styling Buttons with Icons
jQuery Mobile includes a set of standard icons that are commonly used in mobile

applications, which includes a single white icon sprite that has a semi-transparent black

circle behind the icon to ensure a good contrast on any background color (see Figure 4–4).

Figure 4–4. Buttons with standard icons

An icon can be added to any button by adding the data-icon attribute and specifying

which icon to display (see Listing 4–4).

CHAPTER 4: Form Elements and Buttons 67

Listing 4–4. Buttons with icons (ch4/icon-buttons-standard.html)

<!-- Buttons with standard icons. Refer to Table 4–1 for icon list. -->
<input type="button" value="Delete" data-icon="delete"/>
Button link
<button data-icon="minus">Button element</button>

Table 4–1 contains each data-icon attribute value and its corresponding icon image.

Each attribute value has an associated image except for data-icon="custom". We will

see an example of integrating with custom icons in the next section.

Table 4–1. data-icon listing

data-icon Image

plus

minus

delete

arrow-r

arrow-l

arrow-u

arrow-d

check

gear

refresh

forward

back

grid

star

CHAPTER 4: Form Elements and Buttons 68

data-icon Image

alert

info

home

search

custom

Icon-only Buttons

Icon-only buttons are commonly used within headers, toolbars, and tab bars because

they consume very little real estate (see Figure 4–5).

Figure 4–5. Icon-only buttons

In the last chapter we saw several examples of icon-only buttons. We initially saw a

"plus" icon in Figure 3-4 that allowed users to tap the "add" icon to create a new movie

review. We also saw icon-only buttons used within our toolbar (see Figure 3-10) and tab

bars (see Figure 3-12) to help express the meaning of each button. To create an icon-

only button add the data-iconpos=”notext” attribute to the button (see Listing 4–5).

Listing 4–5. Icon-only buttons (ch4/icon-only-buttons.html)

<button data-icon="search" data-iconpos="notext">Search</button>

CHAPTER 4: Form Elements and Buttons 69

NOTE: The semi-transparent black circle behind each white icon ensures a good contrast on any
background color and works well with the jQuery Mobile theming system. For instance, in the
image below, the icons in the first row are styled with data-theme=”a” and the icons in the

second row have the data-theme=”c” styling. To maintain visual consistency, it is recommended
to create a white icon 18 × 18 pixels saved as a PNG-8 with alpha transparency.

Icon Positioning
By default, icons will be left-aligned (see Figure 4–6). However, you may explicitly align

icons to any side by adding the data-iconpos attribute to the button with its value

corresponding to the side of alignment (see Listing 4–6).

Figure 4–6. Icon positioning

Listing 4–6. Icon-only buttons (ch4/icon-positioning.html)

CHAPTER 4: Form Elements and Buttons 70

Buttons with Custom Icons
Remember when we added custom Glyphish icons to our tab bar back in Figure 3-13?

We can integrate buttons with custom icons in the same manner (see Figure 4–7).

Figure 4–7. Custom icons

However, with buttons we can apply a more simplified solution as shown in Listing 4–7.

Two steps are necessary to add custom icons to your buttons:

1. Add a data-icon attribute to the link. The value of this attribute must uniquely

identify the custom icon. For example, data-icon=”my-custom-icon”.

2. Create a CSS class attribute that sets the background source for our custom

image. The name of the class attribute must be named “.ui-icon-<data-icon-

value>. For example, if our data-icon value was “my-custom-icon”, our new CSS

class attribute would be “.ui-icon-my-custom-icon”.

Listing 4–7. Custom icon integration (ch4/icon-buttons-custom.html)

<style>
 .ui-icon-custom1 {
 background:url(...)50% 50% no-repeat;
 background-size: 14px 14px;
 }
</style>
Custom

TIP: The background source for our custom image was loaded with the data URI scheme. This
can be a performant alternative to loading small images externally. For instance, by including the

custom image in-line we have eliminated an HTTP request. However, the main disadvantage of
this technique is the size of the base64 encoded string is 1/3 times larger than the original
image. To see the complete base64 encoded string refer to the source code listing in ch4/icon-

buttons-custom.html.

CHAPTER 4: Form Elements and Buttons 71

Grouping Buttons
Thus far, every button example shown had each button segregated from the others.

However, if you want to group your buttons together, you can wrap your buttons within

a control group. For example, our segmented control examples in Chapter 3 were

grouped this way (see Figure 4–8).

Figure 4–8. Grouping Buttons

To get this effect, wrap a group of buttons in a container with the data-
role=”controlgroup” attribute (see Listing 4–8).

Listing 4–8. Grouping buttons (ch3/header-segmented-control.html)

<div data-role="controlgroup" data-type="horizontal">
 In Theatres
 Coming Soon
 Top Rated
</div>

CHAPTER 4: Form Elements and Buttons 72

By default, the framework will group the buttons vertically, remove all margins, and add

borders between the buttons. Additionally, to visually enhance the group, the first and

last elements will be styled with rounded corners.

Because buttons are positioned vertically by default, we can style them horizontally with

the addition of the data-type=”horizontal” attribute. Unlike vertical buttons that

consume the entire width of their outer container, horizontal buttons are only as wide as

their content.

CAUTION: When grouping buttons horizontally, the control group will wrap when its width

extends beyond the width of the screen.

Theming Buttons
Buttons, like all jQuery Mobile components, will inherit the theme from their parent

container. Furthermore, when you need to style buttons with different colors you can

apply the theme of your choice to any button with the addition of the data-theme

attribute (see Listing 4–9).

Listing 4–9. Theming buttons (ch2/action-sheet2.html)

YouTube
Facebook
Email
Cancel

For instance, in our dialog and action sheet examples we styled our buttons according

to the “Dialog UX Guidelines” in Chapter 2 for improved usability (see Figure 4–9).

CHAPTER 4: Form Elements and Buttons 73

Figure 4–9. Theming Buttons

Dynamic Buttons
The button plugin is the widget that automatically enhances native buttons. We can

leverage this plugin to dynamically create, enable, and disable buttons. If you need to

create buttons dynamically in code there are two options available. You can create

buttons dynamically with a markup-driven approach or by explicitly setting the options

on the button plugin.

In the markup-driven solution, we create the jQuery Mobile markup for the new button,

append it to the content container, and enhance it (see Listing 4–10).

Listing 4–10. Create dynamic button with markup-driven options (ch4/dynamic-buttons.html)

// Add link button to content container and enhance it
$('Star')
 .appendTo(“.ui-content”)
 .button();

// Add form button after the first button and enhance it

CHAPTER 4: Form Elements and Buttons 74

$('<input type="submit" id="b2" value="Button 2" data-theme=”a” />')
 .insertAfter("#b1")
 .button();

For the option-driven solution, we create a native link, insert the button onto the page,

and then apply our button enhancements (see Listing 4–11).

Listing 4–11. Create dynamic button with plugin-driven options (ch4/dynamic-buttons.html)

// Create a new button, insert it after button 2, and enhance it.
$('Home')
 .insertAfter(“#b2”)
 .button({
 'icon':'home',
 'inline': true,
 'shadow': true,
 'theme': 'b'
 });

In our last example, we create multiple form buttons and instead of calling the button

plugin individually for each button we enhance them all with a single call by triggering

the “create” method on the page container (see Listing 4–12). The button plugin also

exposes enable and disable methods that we can leverage to dynamically enable and

disable buttons as shown in Listing 4–12.

Listing 4–12. Create buttons and dynamically disable/enable them (ch4/dynamic-buttons.html)

// Create multiple form buttons
$('<button id="button3">Button3</button>').insertAfter(“#button2”);
$('<button id="button4">Button4</button>').insertAfter(“#button3”);

// Enhance all widgets on the page
$.mobile.pageContainer.trigger("create");

// Disable form button
$(“#button3”).button(“disable”);

// Enable form button
$(“#button3”).button(“enable”);

TIP: Triggering the “create” method on the page container will enhance all components on the
page: $.mobile.pageContainer.trigger("create"); This is a convenient method when you need to

enhance multiple page components at once.

Button Options
The button plugin, which is used by the framework to dynamically enhance buttons, has

the following options:

corners boolean
default: true

CHAPTER 4: Form Elements and Buttons 75

By default, buttons will have rounded corners. Setting this option to false will

remove the rounded corners. This option is also exposed as a data attribute:
data-corners=”false”.

$(“#button1”).button({ corners: false });

icon string
default: null

Sets the icon for the button. This option is also exposed as a data attribute:
data-icon=”plus”.

$(“#button1”).button({ icon: “home” });

iconpos string
default: “left”

Sets the icon position. The possible values are: “left”, “right”, “top”,
“bottom”, and “notext”. The “notext” value will display the button as an icon-

only button with no text. This option is also exposed as a data attribute: data-
iconpos=”notext”.

$(“#button1”).button({ iconpos: “notext” });

iconshadow boolean
default: true

When true, the framework will add a drop shadow to the icon. This option is also

exposed as a data attribute: data-iconshadow=”false”.

$(“#button1”).button({ iconshadow: false });

initSelector CSS selector string
default: "button, [type='button'], [type='submit'], [type='reset'],
[type='image']"

The initSelector is used to define the selectors (element types, data roles, etc.)

that are used to trigger the automatic initialization of the widget plugin. For

instance, all elements that are matched by the default selector will be enhanced

by the button plugin. To override this selector, bind to the mobileinit event and

update the selector as necessary:

$(document).bind("mobileinit", function(){
 $.mobile.button.prototype.options.initSelector = "...";
 });

inline boolean
default: false

If set to true, this will make the button appear as an inline button. By default,

buttons will consume the entire width of their container. In contrast, Inline

buttons only consume the width of their text. This option is also exposed as a

data attribute: data-inline=”true”.

$(“#button1”).button({ inline: true });

CHAPTER 4: Form Elements and Buttons 76

shadow boolean
default: true

By default, buttons will have a drop shadow applied. Setting this option to false

will remove the drop shadow. This option is also exposed as a data attribute:
data-shadow=”false”.

$(“#button1”).button({ shadow: false });

Button Methods
The button plugin has the following methods:

enable: enable a disabled button
$(“#button1”).button(“enable”);

disable: disable a button

$(“#button1”).button(“disable”);

Button Events
The button plugin supports the following events:

create triggered when a button is created

This event is triggered when a custom button is created. It is not used to create

a custom button.

 $('Button2')
 .insertAfter("#button1")
 .button({
 theme: 'a',
 create: function(event) {
 console.log("Creating button...");
 }
 })

Form Elements
jQuery Mobile will enhance all native form elements to make them more attractive and

usable on mobile devices. However, older browsers that do not support these

enhancements will progressively fall back to native elements to maintain a usable

experience.

CHAPTER 4: Form Elements and Buttons 77

Form Basics
Methods for building form-based applications within jQuery Mobile are very similar to

those we have traditionally used to build forms on the Web. Although an action and

method attribute should be specified for clarity, they are not required. By default, the

action will default to the current page's relative path, which can be found with

$.mobile.path.get() and an unspecified method will default to “get”.

When forms are submitted, they will transition to their subsequent page with the default

“slide” transition. However, we may configure our form transition behavior with the

same data attributes we used previously to manage our links (see Listing 4–13).

Listing 4–13. Submitting forms (ch4/form-request.html)

<form action="/save.html" method="post" data-transition="pop">
 <label for="email">Email:</label>
 <input type="email" name="email" id="email" value="" />
 <button type="submit" name="submit">Submit</button>
</form>

We can add the following attributes to our form element to manage transitions or to

disable Ajax:

 data-transition=”pop”

 data-direction=”reverse”

 data-ajax=”false”

CAUTION: It is important to ensure that id attributes for each form are unique across your entire

site. As mentioned previously, when transitioning jQuery Mobile will load the “from” and “to”
pages into the DOM at the same time to complete a smooth transition. To avoid any collisions,

form id's must be unique.

CHAPTER 4: Form Elements and Buttons 78

TIP: When building forms it is recommended to semantically associate each form field with its
corresponding label. The label's for attribute and the input's id attribute establish this
relationship:

<label for="name">Name:</label>

<input type="text" name="name" id="name" value="" />

This association creates 508-compliant applications that are accessible to assistive technologies.

Accessibility is often required by government or state agencies. You can test your mobile

application for compliance with the WAVE3 tool.

Text Inputs
Text inputs are the most cumbersome form field to work with on mobile devices. Unless

you are a world texting champion, entering text on a physical or virtual QWERTY

keyboard is inefficient. This is why it is valuable to automatically collect as much user

information as possible. As mentioned earlier, device APIs can help simplify this user

experience. Although it is a good goal to minimize these tedious tasks, there are times

when we must collect user feedback with text inputs. The most common text form fields

are shown in Figure 4–10.

3 See http://wave.webaim.org/.

http://wave.webaim.org/

CHAPTER 4: Form Elements and Buttons 79

Figure 4–10. Text inputs

From a developer perspective, we can create jQuery Mobile forms and text inputs with

no additional markup necessary (see Listing 4–14). Optionally, we can choose an

appropriate theme for our text inputs by adding the data-theme attribute to our input

element to enhance form field contrast.

Listing 4–14. Text inputs (ch4/text-inputs.html)

<input type="text" name="text" value=”” id=”text” placeholder="Text"/>
<input type="number" name="number" value="" id=”number” />
<input type="email" name="email" value="" id="email" data-theme=”d” />
<input type="url" name="url" value="" id="url" />
<input type="tel" name="tel" value="" id=”tel” />
<input type="search" name="search" value="" id="search" />
<textarea cols="40" rows="8" name="textarea" id="textarea"></textarea>

CHAPTER 4: Form Elements and Buttons 80

TIP: To hide labels in an accessible way attach the ui-hidden-accessible style to the element.
For instance, we applied this technique to the search field in Figure 4-10. This will gracefully
hide the label while preserving 508 compliance:

<label for="search" class="ui-hidden-accessible">Search</label>

 <input type="search" id="search" placeholder="Search" />

When building forms, it is important to associate the input field with its semantic type.

This association has two advantages. First, when the input field receives focus it

prompts the user with the appropriate keyboard. For instance, a field that is specified as

type=”number” will automatically prompt a numeric keyboard (see Figure 4–11).

Likewise, a field that is mapped with type=”tel” will prompt a telephone-specific

keyboard (see Figure 4–12).

Figure 4–11. Numeric keyboard Figure 4–12. Telephone keyboard

CHAPTER 4: Form Elements and Buttons 81

Additionally, this specification allows the browser to apply validation rules that are

applicable for the field type. The browser support for automatic validation when

submitting forms is still minimal but will improve over time. For a complete listing of

mobile input types and attributes refer to Peter-Paul Koch's, “Input tests for mobile”4. It

shows all available mobile input types and attributes with their associated browser

support.

Another feature that is well supported across most mobile browsers is the placeholder
attribute. This attribute adds a hint or label to the text input and automatically

disappears when the field receives focus (see Listing 4–14).

NOTE: The search field (type=”search”) is styled and behaves slightly different than the other
input types. It contains a left-aligned “search” icon, its corners are pill-shaped, and when users

enter text a “delete” icon will appear right-aligned to help clear the field.

Dynamic Text Inputs
The textinput plugin is the widget that automatically enhances text inputs and text

areas. We can leverage this plugin to dynamically create, enable, and disable text inputs

(see Listing 4–15).

Listing 4–15. textinput plugin examples (ch4/dynmic-text-input.html)

// Create text input with markup-driven options
$('<input type="text" name="text1" value="" data-theme="c" />')

.insertAfter(“#firstName”)
 .textinput();

// Create text input with plugin-driven options
$('<input type="text" name="text2" id="text2" value="" />')

.insertAfter(“#text1”)
 .textinput({
 theme: 'c'
 });

// Disable text input
$(“#text1”).textinput(“disable”);

// Enable text input
$(“#text1”).textinput(“enable”);

4 See http://www.quirksmode.org/html5/inputs_mobile.html.

http://www.quirksmode.org/html5/inputs_mobile.html

CHAPTER 4: Form Elements and Buttons 82

Text Input Options
The textinput plugin has the following options:

initSelector CSS selector string
default: "input[type='text'], input[type='search'], :jqmData(type='search'),
input[type='number'], :jqmData(type='number'), input[type='password'],
input[type='email'], input[type='url'], input[type='tel'], textarea"

The initSelector is used to define the selectors (element types, data roles, etc.)

that are used to trigger the automatic initialization of the widget plugin. For

instance, all elements that are matched by the default selector will be enhanced

by the textinput plugin. To override this selector, bind to the mobileinit event

and update the selector as necessary:

$(document).bind("mobileinit", function(){
 $.mobile.textinput.prototype.options.initSelector = "...";

 });

theme string
default: null. Inherited from parent.

Sets the theme swatch color scheme for the text element. This is a letter from a

to z that maps to the swatches included in your theme. By default, all elements

will inherit the same swatch color as their parent container if not explicitly set.

This option is also exposed as a data attribute: data-theme=”a”.

$(“#text1”).textinput({ theme: "a" });

Text Input Methods
The textinput plugin has the following methods:

enable: enable a disabled textinput or textarea.

$(“textarea”).textinput(“enable”);

disable: disable a textinput or textarea.

$(“textarea”).textinput(“disable”);

Text Input Events
The textinput plugin supports the following events:

create triggered when a text input is created

CHAPTER 4: Form Elements and Buttons 83

This event is triggered when a custom text input is created. It is not used to

create a custom input.

 $('<input type="text" name="text2" id="text2" value="" />')
 .textinput({
 theme: 'c',
 create: function(event) {
 console.log("Creating text input...");
 }
 })

 .insertAfter(“#text1”);

Select Menus
The jQuery Mobile framework will automatically enhance all native select elements with

no additional markup required (see Listing 4–16).

Listing 4–16. Native select menu (ch4/select-menu-native.html)

<label for="genre">Genre:</label>
<select name="genre" id="genre">
 <option value="action">Action</option>
 <option value="comedy">Comedy</option>
 <option value="drama">Drama</option>
</select>

This transformation will replace the original select with a jQuery Mobile styled button that

contains a down-arrow icon that is right-aligned. By default, tapping this select button

will launch the native select picker for the OS (see Figure 4–13). Alternatively, as we will

see in the next section, we can configure jQuery Mobile to display custom select menus.

CHAPTER 4: Form Elements and Buttons 84

Figure 4–13. Select menu

After users make their selection, the select button will display the value of the chosen

option(s). If the text value is too large for the button, the text will be truncated and a

trailing ellipsis will be shown. Additionally, multi-select buttons will display a count

bubble or badge after selecting more than one option (see Figure 4–13). This is a visual

effect that highlights the number of selected options.

CAUTION: Some mobile platforms do not support the multi-select feature when creating a select
menu with the multiple="multiple" attribute. Therefore, using custom menus when this
behavior is necessary is recommended.

CHAPTER 4: Form Elements and Buttons 85

Custom Select Menus
As an alternative to the natively rendered options list, we may opt to have our select

menus rendered in a custom HTML/CSS view (see Figure 4–14).

Figure 4–14. Custom select menu

For this view, add a data-native-menu="false" attribute to the select element (see

Listing 4–17).

CHAPTER 4: Form Elements and Buttons 86

Listing 4–17. Custom Select menu (ch4/select-menu-cstom.html)

<label for="genre">Genre:</label>

<select name="genre" id="genre" >
 <option value="">Select one...</option>
 <option value="action">Action</option>
 <option value="comedy">Comedy</option>
 <option value="drama">Drama</option>
</select>

A breakdown of custom versus native advantages is listed below.

Custom advantages:

 Provides a unified user experience across all devices.

 The custom menu provides universal support for the multi-select

option list.

 Adds an elegant way to handle placeholder options. We will review

placeholder options in the next section.

 The custom menus are themable (see Listing 4–17).

Custom disadvantages:

 Not as performant as the native-rendered select menu. This will be

more apparent when comparing menus containing many options.

NOTE: You may also leverage the Mobiscroll5 plugin as another alternative for customized
select menus. At the end of the chapter we include several examples of this plugin as we

demonstrate its usage for a date picker and search filter.

Placeholder Options
A placeholder is a feature that is unique to custom select menus. A placeholder provides

three benefits:

1. A placeholder requires users to make a selection. By default, the first option in the

list will be selected if no placeholder has been configured.

2. A placeholder can be used to display hint text for the unselected select button

(see Figure 4–14). For instance, the unselected Ticket Delivery field is shown with

the placeholder text of “Select one...”.

3. A placeholder also appears as the header when the options list is displayed (see

Figure 4–14).

5 See http://code.google.com/p/mobiscroll/.

http://code.google.com/p/mobiscroll/

CHAPTER 4: Form Elements and Buttons 87

We can configure a placeholder in three ways:

1. We can add text to an option without a value.

<option value="">Select one...</option>

2. We can add the data-placeholder=”true” attribute to an option when it contains

text and a value:

<option value="null" data-placeholder="true">Select one...</option>

3. When you want to make the field required without hint text or a header, use an

empty option:

 <option value=""></option>

Dynamic Select Menus
The selectmenu plugin is the widget that automatically enhances a select menu. With

this plugin we can dynamically create, enable, disable, open, and close select menus

(see Listing 4–18).

Listing 4–18. Dynamic select menus (ch4/dynamic-select-menu.html)

// Create select menu with markup-driven options
$('<select name="select1" id="select1" data-theme="e">...</select>')
 .insertAfter(“#foo”)
 .selectmenu();

// Create select menu with plugin-driven options
$('<select name="select2" id="select2">...</select>')
 .insertAfter(“#select1”)
 .selectmenu({
 theme: "e",
 overlayTheme: "c",
 disabled: false,
 nativeMenu: false
 });

Select Menu Options
The selectmenu plugin has the following options:

corners boolean
default: true

Like other button types, select menu buttons will have rounded corners by

default. Setting this option to false will remove the rounded corners. This option

is also exposed as a data attribute: data-corners=”false”.

$(“#select1”).selectmenu({ corners: false });

CHAPTER 4: Form Elements and Buttons 88

disabled boolean
default: false

Disables the element. The selectmenu plugin also has enable and disable

methods to dynamically enable and disable the control.

$(“#select1”).selectmenu({ disabled: true });

hidePlaceholderMenuItems boolean
default: true

By default, placeholder menu items will be hidden from view when the select

menu is open. To allow the placeholder item to be selectable, set this value to

false.

$(“#select1”).selectmenu({ hidePlaceholderMenuItems: false });

icon string
default: “arrow-d”

Sets the icon for the select button. This option is also exposed as a data

attribute: data-icon=”plus”.

$(“#select1”).selectmenu({ icon: “plus” });

iconpos string
default: “right”

Sets the icon position. The possible values are: “left”, “right”, “none”, and

“notext”. The “notext” value will display the select as an icon-only button with

no placeholder text. The “none” value will remove the icon completely. This

option is also exposed as a data attribute: data-iconpos=”none”.

$(“#select1”).selectmenu({ iconpos: “notext” });

iconshadow boolean
default: true

When true, the framework will add a drop shadow to the icon. This option is also

exposed as a data attribute: data-iconshadow=”false”.

$(“#select1”).selectmenu({ iconshadow: false });

initSelector CSS selector string
default: "select:not(:jqmData(role='slider'))"

The initSelector is used to define the selectors (element types, data roles, etc.)

that trigger the automatic initialization of the widget plugin. For instance, all

elements that are matched by the default selector will be enhanced by the

selectmenu plugin. To override this selector, bind to the mobileinit event and

update the selector as necessary:

$(document).bind("mobileinit", function(){
 $.mobile.selectmenu.prototype.options.initSelector = "..";

 });

CHAPTER 4: Form Elements and Buttons 89

inline boolean
default: false

If set to true, this will make the select button appear as an inline button. By

default, select buttons will consume the entire width of their container. In

contrast, inline buttons only consume the width of their placeholder text. This

option is also exposed as a data attribute: data-inline=”true”.

$(“#select1”).selectmenu({ inline: true });

nativeMenu boolean
default: true

By default, select buttons will launch the native select picker for the OS. To

render the select menu in a custom HTML/CSS view, set this value to false. This

option is also exposed as a data attribute: data-native-menu=”false”.

$(“#select1”).selectmenu({ nativeMenu: false });

shadow boolean
default: true

By default, select buttons will have a drop shadow applied. Setting this option to

false will remove the drop shadow. This option is also exposed as a data

attribute: data-shadow=”false”.

$(“#select1”).selectmenu({ shadow: false });

theme string
default: null. Inherited from parent.

Sets the theme swatch color scheme for element. This is a letter from a to z that

maps to the swatches included in your theme. By default, this will inherit the

same swatch color as its parent container. This option is also exposed as a data

attribute: data-theme=”a”.

$(“#select1”).selectmenu({ theme: "a" });

Select Menu Methods
The selectmenu plugin has the following methods:

enable: enable a disabled select menu

$(“#select1”).selectmenu(“enable”);

disable: disable a select menu.

$(“#select1”).selectmenu(“disable”);

CHAPTER 4: Form Elements and Buttons 90

open: open a closed select menu. This method only works on a custom select.

$(“#select1”).selectmenu(“open”);

close: close an open select menu. This method only works on a custom select.

$(“#select1”).selectmenu(“close”);

refresh: update the custom select menu.

This updates the custom select menu to reflect the native select element's value.

For instance, if the selectedIndex of the native select is updated we can call

“refresh” to rebuild the custom select. If you pass a true argument, you can force

a refresh and a rebuild to occur.

// Select the third menu option and refresh the menu
 var myselect = $("#select1");
 myselect[0].selectedIndex = 2;
 myselect.selectmenu("refresh");

 // refresh and rebuild the list
 myselect.selectmenu(“refresh”, true);

Select Menu Events
The selectmenu plugin supports the following events:

create: triggered when a select menu is created

This event is triggered when a custom select menu is created. It is not used to

create a custom element.

 $('<select name="select2" id="select2">...</select>')
 .insertAfter(“#select1”)
 .selectmenu({
 create: function(event) {
 console.log("Creating select menu...");
 }
 });

Radio Buttons
Radio buttons limit the user's selection to a single item (see Figure 4–15). For instance,

choosing an application setting from among several options is commonly accomplished

with radio buttons, which are preferred for their simplicity and ease of use. Users may

tap anywhere on the radio button to make their selection, and jQuery Mobile will

automatically update the underlying form control.

CHAPTER 4: Form Elements and Buttons 91

Figure 4–15. Radio buttons

In Listing 4–19 we added three additional attributes to help style and position our radio

buttons. The first attribute, data-role=”controlgroup”, elegantly groups the buttons

together with rounded corners. The second attribute, data-type=”horizontal”,
overrides the default positioning—vertical—and displays the buttons horizontally. Lastly,

we themed our buttons. By default, radio buttons will inherit the theme of their parent

control. However, if you want to apply an alternate theme to your radio buttons you may

add the data-theme attribute to the label of the corresponding radio button.

Listing 4–19. Horizontal radio buttons (ch4/radio-buttons.html)

<fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Map view:</legend>
 <input type="radio" name="map" id="map1" value="Map" />
 <label for="map1" data-theme=”b”>Map</label>

 <input type="radio" name="map" id="map2" value="Satellite" />
 <label for="map2" data-theme=”b”>Satellite</label>

 <input type="radio" name="map" id="map3" value="Hybrid" />

CHAPTER 4: Form Elements and Buttons 92

 <label for="map3" data-theme=”b”>Hybrid</label>
</fieldset>

Caution: Horizontal radio buttons will wrap if their container is not wide enough to display them
on a single row. You may reduce their font size if wrapping is an issue: .ui-controlgroup-

horizontal .ui-radio label {font-size: 13px !important;}

Dynamic Radio Buttons
The checkboxradio plugin is a reusable widget that automatically enhances both radio

buttons and checkboxes. With this plugin we can dynamically create, enable, disable,

and refresh our radio buttons (see Listing 4–20).

Listing 4–20. Dynamic radio buttons (ch4/dynamic-radio-buttons.html)

// Create radio buttons with markup-driven options
$('<fieldset data-role="controlgroup">
 <legend>Map view:</legend>
 <input type="radio" name="map" id="map1" value="Map" />
 <label for="map1" data-theme="c">Map</label>...</fieldset>')
 .insertAfter("#radio1");
$.mobile.pageContainer.trigger("create");

// Create radio buttons with plugin-driven options
$('<fieldset data-role="controlgroup">
 <legend>Map view:</legend>
 <input type="radio" name="map" id="map1" value="Map" />
 <label for="map1">Map</label>...</fieldset>')
 .insertAfter("#radio1");
$(“#map1”).checkboxradio({ theme: "e" });
$(“#map2”).checkboxradio({ theme: "e" });
$.mobile.pageContainer.trigger("create");

Checkbox and Radio Button Options
The checkboxradio plugin has the following options:

initSelector CSS selector string
default: "input[type='checkbox'],input[type='radio']"

The initSelector is used to define the selectors (element types, data roles, etc.)

that are used to trigger the automatic initialization of the widget plugin. For

instance, all elements that are matched by the default selector will be enhanced

by the checkboxradio plugin. To override this selector, bind to the mobileinit

event and update the selector as necessary:

$(document).bind("mobileinit", function(){
 $.mobile.checkboxradio.prototype.options.initSelector = "...";

 });

CHAPTER 4: Form Elements and Buttons 93

theme string
default: null. Inherited from parent.

Sets the theme swatch color scheme for the checkbox or radio button. This is a

letter from a to z that maps to the swatches included in your theme. By default,

this will inherit the same swatch color as its parent container. This option is also

exposed as a data attribute: data-theme=”a”.

$(“#element1”).checkboxradio({ theme: "a" });

Checkbox and Radio Button Methods
The checkboxradio plugin has the following methods:

enable: enable a disabled checkbox or radio button.

$(“#element1”).checkboxradio(“enable”);

disable: disable a checkbox or radio button.

$(“#element1”).checkboxradio(“disable”);

refresh: update the custom checkbox or radio button

This updates the custom checkbox or radio button to reflect the native

element's value. For instance, we can dynamically check a radio button and call

“refresh” to rebuild the enhanced control.

// Dynamically set a checkbox or radio element and refresh it.
$("#elem1").attr("checked", true).checkboxradio("refresh");

Checkbox and Radio Button Events
The checkboxradio plugin supports the following events:

create: triggered when a checkbox or radio button is created

This event is triggered when a custom checkbox or radio button is created. It is

not used to create a custom element.

 $('#element1')
 .checkboxradio({
 theme: "e",
 create: function(event) {
 console.log("Creating new element...");
 }
 });

CHAPTER 4: Form Elements and Buttons 94

Checkboxes
Checkboxes are a common form control for allowing users to select multiple values from

a listing of many choices (see Figure 4–16). Users may tap anywhere on the checkbox

button to make a selection, and jQuery Mobile will automatically update the underlying

form control.

Figure 4–16 Checkboxes

The markup for styling and positioning checkboxes is identical to what we previously

used for radio buttons (see Listing 4–21). Again, we add three additional attributes to

help style and position our checkboxes. The first attribute, data-role=”controlgroup”,

elegantly groups the checkbox elements together with rounded corners. The second

attribute, data-type=”horizontal”, overrides the default vertical positioning of the

buttons and displays them horizontally. Lastly, we themed our buttons. By default,

checkboxes will inherit the theme of their parent control. However, if you want to apply

an alternate theme you may add the data-theme attribute to the label of the

corresponding checkbox.

CHAPTER 4: Form Elements and Buttons 95

Listing 4–21. Horizonal checkboxes (ch4/checkboxes.html)

<fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Genre:</legend>
 <input type="checkbox" name="genre" id="c1" />
 <label for="c1" data-theme=”c”>Action</label>

 <input type="checkbox" name="genre" id="c2" />
 <label for="c2" data-theme=”c”>Comedy</label>

 <input type="checkbox" name="genre" id="c3" />
 <label for="c3" data-theme=”c”>Drama</label>
</fieldset>

CAUTION: Horizontal checkboxes will wrap if their container is not wide enough to display them
on a single row. You may reduce their font size if wrapping is an issue:

 .ui-controlgroup-horizontal .ui-checkbox label {

 font-size: 11px !important; }

Dynamic Checkboxes
Again, the checkboxradio plugin is the widget that automatically enhances both

checkboxes and radio buttons. With this plugin we can dynamically create, enable,

disable, and refresh our checkboxes (see Listing 4–22). The complete listing of the

checkboxradio plugin was previously documented in the “Dynamic Radio Buttons”

Section. The same API is reusable for both radio buttons and checkboxes.

Listing 4–22. Dynamic checkboxes (ch4/dynamic-checkboxes.html)

// Create checkboxes with markup-driven options
$('<fieldset data-role="controlgroup">
 <legend>Genre:</legend>
 <input type="checkbox" name="genre" id="c1" />
 <label for="c1" data-theme="c">Action</label>...</fieldset>')
 .insertAfter("#element1");
$.mobile.pageContainer.trigger("create");

// Create checkboxes with plugin-driven options
$('<fieldset data-role="controlgroup">
 <legend>Genre:</legend>
 <input type="checkbox" name="genre" id="c3" />
 <label for="c3">Action</label>...</fieldset>')
 .insertAfter("#create-cb2");
$('#c3').checkboxradio({ theme: "e" });
$('#c4').checkboxradio({ theme: "e" });
$.mobile.pageContainer.trigger("create");

CHAPTER 4: Form Elements and Buttons 96

Slider
A slider is a common form control that allows users to select a value between a

minimum and maximum range (see Figure 4–17).

Figure 4–17. Slider

For instance, in our example, we adjust the volume or brightness with a slider to adjust

the range between a low and high setting. We can adjust the minimum and maximum

boundaries of the slider and also set its default value. The user may adjust the slider by

either sliding the control or by entering a value into the slider's corresponding text field.

As shown in Listing 4–23, no additional markup is necessary for jQuery Mobile to

enhance our slider. Any input element with type=”range” will be automatically

optimized.

Listing 4–23. Slider (ch4/slider.html)

<label for="volume">Volume:</label>
<input type="range" name="volume" id="volume" value="5" min="0" max="9"/>

CHAPTER 4: Form Elements and Buttons 97

A slider consists of two themeable components. There is the foreground component

known as the slider and the background component known as the track. Each of these

components can be themed separately. To theme the slider, add the data-theme=”a”

attribute to the input element. Additionally, to theme the track, add the data-track-
theme=”a” attribute to the input element:

<input type="range" name="brightness" id="brightness" min="0" max="10" data-theme="b"
data-track-theme="a" />

Dynamic Slider
The slider plugin is a multi-purpose widget that automatically enhances both sliders

and switch controls. With this plugin we can dynamically create, enable, disable, and

turn the switch control off and on (see Listing 4–24).

Listing 4–24. Dynamic slider (ch4/dynamic-slider.html)

// Create slider with markup-driven options
$('<label for="s1">Brightness:</label>
 <input type="range" name="s1" id="s1" min=”0” max=”9” data-theme="d”/>')
 .insertAfter("#element1");
$("#s1").slider();

// Create slider with plugin-driven options
$('<label for="s1">Brightness:</label>
 <input type="range" name="s1" id="s1" min="0" max="10" />')
 .insertAfter("#create-s2");
$("#s1").slider({
 theme: "d",
 trackTheme: "a",
 disabled: false
});

Slider Options
The slider plugin has the following options:

disabled boolean
default: false

Disables the control. The slider plugin also has enable and disable methods to

dynamically enable and disable the control.

$(“#element1”).slider({ disabled: true });

initSelector CSS selector string
default: "input[type='range'], :jqmData(type='range'), :jqmData(role='slider')"

The initSelector is used to define the selectors (element types, data roles, etc.)

that trigger the automatic initialization of the widget plugin. For instance, all

elements that are matched by the default selector will be enhanced by the

CHAPTER 4: Form Elements and Buttons 98

slider plugin. To override this selector, bind to the mobileinit event and

update the selector as necessary:

$(document).bind("mobileinit", function(){
 $.mobile.slider.prototype.options.initSelector = "...";

 });

theme string
default: null. Inherited from parent.

Sets the theme swatch color scheme for the slider. This is a letter from a to z

that maps to the swatches included in your theme. By default, this will inherit the

same swatch color as its parent container. This option is also exposed as a data

attribute: data-theme=”a”.

$(“#element1”).slider({ theme: "a" });

trackTheme string
default: null. Inherited from parent.

Sets the theme swatch color scheme for the track the slider slides along. This is

a letter from a to z that maps to the swatches included in your theme. By

default, this will inherit the same swatch color as its parent container if not

explicitly set. This option is also exposed as a data attribute: data-track-
theme=”a”.

$(“#element1”).slider({ trackTheme: "a" });

Slider Methods
The slider plugin has the following methods:

enable: enable a disabled slider or switch control.

$(“#element1”).slider(“enable”);

disable: disable a slider or switch control.

$(“#element1”).slider(“disable”);

refresh: update a custom slider or switch control.

This updates the custom slider or switch to reflect the native element's value.

For instance, we can dynamically update our switch or slider and call “refresh” to

rebuild the control.

// Set the switch to “on” and refresh it
var switch = $("#switch1");
switch[0].selectedIndex = 1;

CHAPTER 4: Form Elements and Buttons 99

switch.slider("refresh");

// Maximize the slider's volume control and refresh it
$("#volume").val(10).slider("refresh");

Slider Events
The slider plugin supports the following events:

create: triggered when a slider or switch control is created

This event is triggered when a custom slider or switch control is created. It is not

used to create a custom element.

 $('<select name="switch2" id="switch2">...</select>')
 .insertAfter(“#element1”)
 .slider({
 create: function(event) {
 console.log("Creating new element...");
 });

Switch Control
A switch control (see Figure 4–18) is commonly used to manage boolean on/off flags.

CHAPTER 4: Form Elements and Buttons 100

Figure 4–18. Switch control

For instance, switch controls are often the preferred means of allowing the user to

manipulate application settings, due to their simplicity and ease of use. To flip the

switch, the user can either tap the control or slide the switch. To create a switch control,

add a select element with the data-role=”slider” and two options to manage the on/off

states (see Listing 4–25).

Listing 4–25. Switch control (ch4/switch-control.html)

<label for="alerts">Alerts:</label>
<select name="slider" id="alerts" data-role="slider">
 <option value="off">Off</option>
 <option value="on">On</option>
</select>

A switch control also consists of two themeable components. There is the foreground

component known as the slider and the background component known as the track.

Each of these components can be themed separately. To theme the slider, add the

data-theme=”a” attribute to the select element. Additionally, to theme the track, add the

data-track-theme=”a” attribute to the select element:

<select name="slider" data-theme="b" data-track-theme="c" data-role="slider">

CHAPTER 4: Form Elements and Buttons 101

 <option value="off">Off</option>
 <option value="on">On</option>
</select>

Dynamic Switch Control
As previously mentioned, the slider plugin is the widget that automatically enhances a

switch control. With this plugin we can dynamically create, enable, disable, and turn the

switch off and on (see Listing 4–26). The complete listing of the slider plugin was

previously documented in the “Dynamic Slider” Section. The same API is reusable for

both sliders and switches.

Listing 4–26. Dynamic switch control (ch4/dynamic-switch-control.html)

// Create switch with markup-driven options
$('<select name="switch1" data-role="slider" data-theme="c"></select>')

.insertAfter(“#foo”)
 .slider();

// Create switch with plugin-driven options
$('<select name="switch2" id="switch2">...</select>')

.insertAfter(“#switch1”)
 .slider({
 theme: "b",
 trackTheme: "c",
 disabled: false
 });

Native Form Elements
jQuery Mobile automatically enhances all form elements defined within your page.

However, if you want to fall back to the native controls (see Figure 4–18) this can be

configured globally or at the field level (see Listing 4–27).

CHAPTER 4: Form Elements and Buttons 102

Figure 4–19. Native Form Elements

Listing 4–27. Native form elements (ch4/native.html)

// Selectively choose which elements are native with data-role=”none”
<label for="name">Text Input</label>
<input type="text" name="name" id="name" value="" data-role="none" />

<label for="slider2">Switch:</label>
<select name="slider2" id="slider2" data-role="none">
 <option value="off">Off</option>
 <option value="on">On</option>
</select>

// Globally configure native elements by selector
$(document).bind('mobileinit',function(){
 $.mobile.page.prototype.options.keepNative = "input, select";
});

CHAPTER 4: Form Elements and Buttons 103

To individually set a form field to display its native control, add the data-role=”none”

attribute to its element. Alternatively, you can globally configure which form elements

should render natively by setting the keepNative selector when the mobileinit event

initializes. For instance, in Listing 4–27, we configured our selector to automatically

display all input and select elements in their native appearance. We will discuss how to

configure jQuery Mobile in greater depth in Chapter 8, “Configuring jQuery Mobile”.

HTML5 provides several new input types to help collect date and time inputs. We now

have time, date, month, week, datetime, and datetime-local input types (see Listing 4-28).

Listing 4-28. HTML5 dates (ch4/dates.html)

<input type="time" name="time" />
<input type="datetime-local" name="dtl" />
<input type="date" name="date" />
<input type="month" name="month" />
<input type="week" name="week" />
<input type="datetime" name="dt" />

Support for these newer HTML5 input types is browser dependent (see

http://www.quirksmode.org/html5/inputs.html). The newer browsers that support

these features will display helpful date pickers (see Figure 4-20) and the unsupported

browsers will fallback to text inputs.

Figure 4-20. HTML5 Dates

http://www.quirksmode.org/html5/inputs.html

CHAPTER 4: Form Elements and Buttons 104

Mobiscroll Date Picker
Mobiscroll6 is an optimized date picker for touch screen devices. The Mobiscroll API is

configurable,7 which allows for the display of several date and time combinations (see

Figure 4–21). Additionally, Mobiscroll is themable and can also be customized to display

any data necessary (see Figure 4–22).

Figure 4–21. Mobiscroll Date Picker Figure 4–22. Mobiscroll with custom lists

For example, we can update the MobiScroll options to create a customized movie

search (see Listing 4–29). The Mobiscroll plugin is a flexible control that can be used for

many different use cases.

6 See http://code.google.com/p/mobiscroll/.

7 See http://code.google.com/p/mobiscroll/wiki/Documentation.

http://code.google.com/p/mobiscroll/
http://code.google.com/p/mobiscroll/wiki/Documentation

CHAPTER 4: Form Elements and Buttons 105

Listing 4–29. Mobiscroll (ch4/mobiscroll.html)

// Import the Mobiscroll resources
<script type="text/javascript" src="jquery.scroller-1.0.2.js"></script>
<link type="text/css" rel="stylesheet" href="jquery.scroller-1.0.2.css"/>

// Display the default date picker (see Figure 4–21).
$(“#element1”).scroller();

// Display a custom filter for a movie search (see Figure 4–22).
$("#element2").scroller({
 setText: 'Search',
 theme: 'sense-ui',
 wheels: [{
 'Rating': { '5-star': '*****', '4–star': '****' ... },
 'Genre': { 'action': 'Action', 'comedy': 'Comedy', ...},
 'Screen': { '3d': '3D', 'imax': 'IMAX', 'wide': 'Wide' }
 }]
});

Summary
In this chapter, we reviewed every standard HTML form component and saw how jQuery

Mobile automatically enhances each component to provide a unified user experience

across all devices.

As we reviewed each component, we discussed its usage and identified common use

cases it solves really well. We also reviewed the jQuery Mobile data attributes that are

unique to each form element and saw code examples of how we can modify these

attributes to configure and style our forms. Furthermore, we reviewed the plugins that

are associated with each form component and saw how we can leverage the plugin API

to dynamically create, enhance, and update our own components when users require a

more dynamic experience.

Lastly, we explored the features of the Mobiscroll plugin and saw how it provides an

elegant and flexible interface for date pickers, search filters, or custom lists.

In Chapter 5, our focus will shift from gathering user information to presenting user

information. In particular, we will see the many ways we can style and configure lists of

information.

107

 Chapter

List Views
Lists are a popular user interface component because they make the browsing

experience very simple and efficient. Lists are also a very flexible component that can be

styled in many ways and they adapt very well to different screen sizes. Whether we are

browsing our mail, contacts, music, or settings, each of these apps display lists of

information in slightly different styles. From basic lists that only include text to complex

lists with graphics and detailed meta data, lists must be flexible enough to support many

configurations. Fortunately, jQuery Mobile supports all of these list configurations and

more. In this chapter we will explore the details of styling and configuring lists within

jQuery Mobile. We will also see how to add search filters to our lists. Lastly, we will

review the list view plugin API and see examples of how we can create and update lists

dynamically.

List Basics
jQuery Mobile will automatically enhance any native HTML list (or) into a

mobile optimized view when we add the data-role=”list” attribute to our list element.

The enhanced list will display edge-to-edge by default, and if our list items contain links,

they will be displayed as touch-friendly buttons with a right-aligned arrow icon (see

Figure 5–1 and the code snippet to produce it in Listing 5–1). By default, lists will be

styled with the “c” swatch (gray) color. To apply an alternate theme, add the data-theme

attribute to the list element or list items ().

5

CHAPTER 5: List Views 108

Figure 5–1. Basic list

Listing 5–1. Basic list (ch5/list-basic.html)

<ul data-role="listview" data-theme="c">
 Action
 Adventure
 Comedy

Inset Lists
An inset list will not appear edge-to-edge. Instead, an inset list is automatically wrapped

inside a block with rounded corners and has margins set for additional spacing. To create an

inset list, add the data-inset="true" attribute to the list element (see Figure 5–2 and 5–3,

and the related code in Listing 5–2).

CHAPTER 5: List Views 109

Figure 5–2. Inset list (iOS) Figure 5–3. Inset list (Windows Phone 7)

Listing 5–2. Inset list (ch5/list-inset.html)

<ul data-role="listview" data-inset="true">
 <li data-role="list-divider">Contact Options
 Call
 ...

List Dividers
A list divider can be used as a heading for a group of list items. For instance, if our

app has a calendar listing, we may choose to group our calendar events by day (see

Figure 5–4). List dividers can also be used as headers for inset lists. In our prior

example, we also set the header of our inset list with a list divider (see Figure 5–2 and

Listing 5–2).

To create a list divider, add the data-role="list-divider" attribute to any list item. The

list divider's default text will appear left-aligned.

CHAPTER 5: List Views 110

TIP: In Figure 5–4, the list items contain both left-aligned and right-aligned text. To position text

right-aligned, wrap it with an element that contains a class of ui-li-aside (see Listing 5–3).

By default, list dividers will be styled with the "b" swatch (light blue) color. To apply an

alternate theme, add the data-divider-theme="a" attribute to the list element.

Figure 5–4. List dividers

CHAPTER 5: List Views 111

Listing 5–3. List dividers (ch5/list-dividers.html)

<ul data-role="listview">
 <li data-role="list-divider" data-divider-theme="a">
 Mon <p class="ui-li-aside">Feb 6 2012</p>

 6 PM Birthday Party

Lists with Thumbnails and Icons
We can add thumbnails to the left of our list item by adding an image inside a list item as

the first child element (see Figure 5–5 and its related code in Listing 5–4). The framework

will scale the image to 80 pixels square.

Figure 5–5. List with thumbnails

CHAPTER 5: List Views 112

Listing 5–4. List with thumbnails (ch5/list-thumbnails.html)

<ul data-role="listview">

 <h3>Kung Fu Panda</h3>
 <p>Rated: PG</p>
 <p>Runtime: 95 min.</p>

 ...

We can also use smaller icons instead of thumbnails. To use standard 16x16 pixel icons

in list items, add the class of ui-li-icon to the image element (see Figure 5–6 and its

related code in Listing 5–5).

Figure 5–6. List with icons

CHAPTER 5: List Views 113

Listing 5–5. List with icons (ch5/list-icons.html)

<ul data-role="listview" data-inset="true" data-theme="d">
 <li data-role="list-divider">User Reviews

 <p>Go See It!</p>
 <p>This movie had a strong script and ... </p>

 ...

Split Button Lists
In situations where you need to support multiple actions per list item, we can create a

split button list that has a primary and secondary button to choose from. For instance,

we can modify our original movie listing example to support multiple actions. Our

primary button will continue to show movie details and our new secondary button could

be used to purchase tickets (see Figure 5–7).

Figure 5–7. List with split buttons

CHAPTER 5: List Views 114

To create a split button, add a secondary link inside the list item and the framework will

add a vertical line dividing the primary and secondary actions (see Listing 5–6).

Listing 5–6. List with split buttons (ch5/list-split-buttons.html)

<ul data-role="listview" data-split-icon="star" data-split-theme="d">

 <h3>Kung Fu Panda</h3>
 <p>Rated: PG</p>
 <p>Runtime: 95 min.</p>

 Buy Tickets

 ...

To set the icon for all secondary buttons, add the data-split-icon attribute to the list

element and set its value to a standard (see Table 4-1) or custom icon. By default, the

secondary button will be styled with the “b” swatch (light blue) color. To apply an

alternate theme, add the data-split-theme attribute to the list element.

Numbered Lists
Numbered lists will be created when using an ordered list (see Figure 5–8 and its

related code in Listing 5–7).

CHAPTER 5: List Views 115

Figure 5–8. List with numbers

Listing 5–7. List with numbers(ch5/list-numbered.html)

<ol data-role="listview">
 The Amazing Spider-Man
 The Dark Knight Rises
 ...

By default the framework will add the numerical index to the left of each list item. These

lists are useful when showing a listing of items that can be ranked sequentially. For

instance, our “top rated” movies view is an ideal candidate for a numbered list because

the sequence quickly associates which movies are rated highest.

Read-only Lists
List views can also display read-only views of data. The user interface looks very similar

to our interactive views shown previously except the right arrow icon-only image has

been removed and the font size and padding is slightly smaller. To create a read-only

list, simply remove the anchor tags we used in our previous examples (see Figure 5–9

and its related code in Listing 5–8).

CHAPTER 5: List Views 116

Figure 5–9. List with read-only items

Listing 5–8. List with read-only items (ch5/list-readonly.html)

<ul data-role="listview">

 <h3>Kung Fu Panda</h3>
 <p>Rated: PG</p>
 <p>Runtime: 95 min.</p>

 ...

CHAPTER 5: List Views 117

List Badges (Count Bubbles)
A list badge or count bubble is a highlighted oval that typically indicates the number of

new items that are available for viewing. For instance, badges are commonly used in

mail applications to indicate how many unread email items you have. In our example,

badges are used to indicate when a comment was added about a movie review (see

Figure 5–10). A badge can be used to express any type of meta data.

Figure 5–10. List with badges or count bubbles

To create a badge, wrap the text of the badge with an element that contains a class of ui-
li-count. By default, badges will be styled with the “c” swatch (gray) color. To apply an

alternate theme, add the data-count-theme attribute to the list element (see Listing 5–9).

Listing 5–9. List with badges or count bubbles (ch5/list-badges.html)

<ul data-role="listview" data-inset="true" data-count-theme="e">
 <li data-role="list-divider">Comments</p>

CHAPTER 5: List Views 118

 <p>Thanks for the review. I'll check it out this weekend.</p>
 1 day ago

List Filtering with Search Bar
jQuery Mobile has a very convenient client-side search feature for filtering lists. To

create a search bar, add the data-filter=”true” attribute to the list. The framework will

then append a search filter above the list and the default placeholder text will display the

words, “Filter items...” (see Figure 5–11 and its related code in Listing 5–10).

Figure 5–11. List filtering (unfiltered)

CHAPTER 5: List Views 119

Listing 5–10. List filtering (ch5/list-filter.html)

<ul data-role="listview" data-filter="true" data-filter-
 placeholder="Search...">
 <li data-role="list-divider">
 Mon <p class="ui-li-aside">Feb 6 2012</p>

 <p>6 PM Birthday Party</p>

There are two options available for configuring the placeholder text:

1. You can configure the placeholder text by adding the data-filter-placeholder

attribute on the list element (see Listing 5–10).

2. Or you may set the placeholder text globally as a jQuery Mobile configuration

option by binding to the mobileinit event and setting the filterPlaceholder

option to any custom placeholder value:

 $(document).bind('mobileinit',function(){
 $.mobile.listview.prototype.options.filterPlaceholder="Search..";
 });

We will discuss configuring jQuery Mobile in much greater detail in Chapter 8,

“Configuring jQuery Mobile”.

As you begin entering text in the search filter, a client-side filter will only show items

matching the wildcard search (see Figure 5–12).

CHAPTER 5: List Views 120

Figure 5–12. List filtering (filtered)

If you need to change the default search functionality there are two options for

overriding the callback used for filtering:

First, you may update the search functionality globally as a jQuery Mobile configuration

option by binding to the mobileinit event and setting the filterCallback option to any

custom search function. For instance, here we set the callback to use a “starts with”

search:

$(document).bind('mobileinit',function(){
 $.mobile.listview.prototype.options.filterCallback =
 function(text, searchValue){
 // Use a "starts with" search
 return !(text.toLowerCase().indexOf(searchValue) === 0);
 };
});

The callback function is provided two arguments, text and searchValue. The text

argument contains the text of the list item and the searchValue argument contains the

value of the search filter. The default behavior for the wildcard search is coded as:

CHAPTER 5: List Views 121

 return text.toLowerCase().indexOf(searchValue) === -1;

If the callback returns a truthy value for a list item it will be hidden from the search

results.

Alternatively, we can also configure our search functionality dynamically after our list has

been created. For instance, after our page loads we can apply our new search behavior

for a specific list:

$("#calendar-list").listview('option', 'filterCallback',
 function(text, searchValue) {
 // Use a "starts with" search
 return !(text.toLowerCase().indexOf(searchValue) === 0);
 }
);

By default, the search box will inherit its theme from its parent container. To configure

an alternate theme add the data-filter-theme attribute to the list element.

Dynamic Lists
The listview plugin is the widget that automatically enhances lists. We can leverage this

plugin to dynamically create and update our lists. There are two options available for

creating dynamic lists. You can create lists dynamically with a markup-driven approach

or by explicitly setting the options on the listview plugin (see Listing 5–11).

Listing 5–11. listview plugin examples (ch5/dynmic-lists.html)

// Create list with markup-driven options
$('<ul data-inset="true" id="list1">
 <li data-role="list-divider">Genres
 Action
 Comedy')
 .insertAfter("#list0")
 .listview();

// Create list with plugin-driven options
$('<li data-role="list-divider">Genres
 Action
 Comedy')
 .insertAfter("#list1")
 .listview({
 theme: "d",
 dividerTheme: "a",
 inset: true,
 });

// Add a new item to an existing list
$("#list1")
 .append('Drama')
 .listview(“refresh”);

CHAPTER 5: List Views 122

List Options
The listview plugin has the following options:

countTheme string
default: "c"

Sets the theme swatch color scheme for the badges or count bubbles. This is a

letter from a-z that maps to the swatches included in your theme. This option is

also exposed as a data attribute: data-count-theme=”a”.

$(“#list1”).listview({ countTheme: "a" });
dividerTheme string

default: "b"

Sets the theme swatch color scheme for the list dividers. This is a letter from a-z

that maps to the swatches included in your theme. This option is also exposed

as a data attribute: data-divider-theme=”a”.

$(“#list1”).listview({ dividerTheme: "a" });
initSelector CSS selector string

default: ":jqmData(role='listview')"

The initSelector is used to define the selectors (element types, data roles, etc.)

that are used to trigger the automatic initialization of the widget plugin. For

instance, all elements that are matched by the default selector will be enhanced

by the listview plugin. To override this selector, bind to the mobileinit event

and update the selector as needed:

$(document).bind("mobileinit", function(){
 $.mobile.listview.prototype.options.initSelector = "...";
 });

inset boolean
default: false

An inset list will be created when this option is set to true. By default, a basic list

will be created. This option is also exposed as a data attribute: data-
inset=”true”.

$(“#list1”).listview({ inset: true });
splitIcon string

default: "arrow-r"

Sets the icon for the secondary button when building a split button list. This

option is also exposed as a data attribute: data-split-icon=”star”.

$(“#list1”).listview({ splitIcon: "star" });
splitTheme string

default: "b"

Sets the theme swatch color scheme for the secondary button when creating a

split button list. This is a letter from a-z that maps to the swatches included in

your theme. This option is also exposed as a data attribute: data-split-
theme=”a”.

CHAPTER 5: List Views 123

$(“#list1”).listview({ splitTheme: "a" });
theme string

default: "c"

Sets the theme swatch color scheme for the list. This is a letter from a-z that

maps to the swatches included in your theme. This option is also exposed as a

data attribute: data-theme=”a”.

$(“#list1”).listview({ theme: "a" });

List Methods
The listview plugin has the following methods:

refresh: updates the custom list.

This updates the custom list to reflect the native list element's value. For instance, if we

add a new item to an existing list, we must call “refresh” to rebuild the list items:

 // Add an item to an existing list and refresh the list item
 $("#list1")
 .append('Drama')
 .listview(“refresh”);

 // Add list items to a new list and refresh the entire list
 var markup = 'item 1item 2';
 $("#list2")
 .append(markup)
 .listview("refresh", true);

List Events
The listview plugin supports the following events:

create: triggered when a list is created

This event is triggered when a custom list is created. It is not used to create a custom list.

 $('<li data-role="list-divider">Genres
 Comedy')
 .insertAfter("#list1")
 .listview({
 inset: true,
 create: function(event) {
 console.log("Creating list...");
 }
 });

Summary
In this chapter, we reviewed the very popular list view component. List views are

commonly used because they make the browsing experience very simple and efficient.

jQuery Mobile lists can be styled and configured in many unique ways. From basic lists

CHAPTER 5: List Views 124

to lists with images, split buttons, dividers, or badges, we have many configuration

options to choose from.

We also saw how easy it was to add a search filter to our lists and saw examples of how

we could override the default search if necessary.

Lastly, we reviewed the listview plugin API and saw examples of how to dynamically

create and update lists to provide our users with a more interactive experience.

In our next chapter, we will explore another popular user interface component, jQuery

Mobile's flexible grid layout. We will see how we can use grids to create responsive

designs and we will also look at enhancing our user interface with CSS gradients.

125

 Chapter

Formatting Content with
Grids and CSS Gradients
Mobile applications often use grids for content that needs to be flexible and grouped

into sections. jQuery Mobile’s responsive grid is a useful solution for designs that require

this behavior. In this chapter, we will review the basics of the jQuery Mobile grid

component and show several examples of how we can style icons, graphics, and text in

our grids. We will also create collapsible content blocks and discuss the advantage they

provide when compared to an inline page structure. Lastly, we will add a bit of polish to

our designs with CSS gradients and discuss the advantages that CSS gradients provide

in regards to performance and progressive enhancement.

Grid Layouts
jQuery Mobile’s grids are configurable to support layouts in the range of two to five

columns. From an HTML perspective, grids are div elements that are configured with

CSS attributes. The Grid is flexible and will consume the entire width of your display.

The grids do not contain borders, padding, or margins so they will not interfere with the

styles of elements contained within them. Before we look at an example let's review the

standard grid template.

Grid Template
The grid template may be a helpful reference when creating multi-column grids (see

Listing 6–1).

Listing 6–1. Grid Template

<div data-role="content">

 <!-- Grid container -->
 <div class="<grid-css-attribute>">

6

CHAPTER 6: Formatting Content with Grids and CSS Gradients 126

 <!-- Blocks -->
 <div class="<block-css-attribute>">Block A</div>
 <div class="<block-css-attribute>">Block B</div>

 </div>
</div>

When creating a grid, you will be required to create the outer grid container with two or

more inner blocks:

1. Grid container: The grid container requires the CSS attribute ui-grid-* to

configure the number of columns in the grid (see Table 6–1). For instance, to

create a two-column grid we would set our grid CSS attribute to ui-grid-a.

Table 6–1. Grid CSS Attribute Reference

Number of Columns Grid CSS Attribute

2 ui-grid-a

3 ui-grid-b

4 ui-grid-c

5 ui-grid-d

2. Blocks: The blocks are contained within the grid. The blocks require the CSS

attribute ui-block-* to identify its column position (see Table 6–2). For instance, if

we had a two-column grid, our first block would be styled with CSS attribute ui-
block-a and the second block would be styled with CSS attribute ui-block-b.

Table 6–2. Block CSS Attribute Reference

Column Block CSS Attribute

1st ui-block-a

2nd ui-block-b

3rd ui-block-c

4th ui-block-d

5th ui-block-e

CHAPTER 6: Formatting Content with Grids and CSS Gradients 127

Two-Column Grid
A two-column (50%, 50%) grid is shown in Figure 6–1 with its related code in Listing 6–2.

Figure 6–1. Two-column grid

Listing 6–2. Two-column grid (ch6/grid-2col.html)

<div data-role="content">
 <div class="ui-grid-a">
 <div class="ui-block-a">Block A</div>
 <div class="ui-block-b">Block B</div>
 </div>
</div>

The outer grid is configured with the CSS grid attribute of ui-grid-a. Next, we add two

internal blocks. The first block is assigned a CSS value of ui-block-a and the second

column is assigned a CSS value of ui-block-b. As shown in Figure 6–1, the columns are

equally spaced, borderless, and the text within each block will wrap when necessary. As

CHAPTER 6: Formatting Content with Grids and CSS Gradients 128

an added bonus, the grids within jQuery Mobile are flexible and will render responsively

across different display sizes (see Figure 6–2).

Figure 6–2. Two-column grid (landscape)

Three-Column Grid with CSS Enhancements
A three-column (33%, 33%, 33%) grid is shown in Figure 6–3 with its related code in

Listing 6–3.

Figure 6–3. Three-column grid with CSS enhancements

CHAPTER 6: Formatting Content with Grids and CSS Gradients 129

Listing 6–3. Three-column grid (ch6/grid-3col.html)

<div data-role="content">
 <div class="ui-grid-b">
 <div class="ui-block-a">
 <div class="ui-bar ui-bar-e" style="height:100px">Block A</div>
 </div>
 <div class="ui-block-b">
 <div class="ui-bar ui-bar-e" style="height:100px">Block B</div>
 </div>
 <div class="ui-block-c">
 <div class="ui-bar ui-bar-e" style="height:100px">Block C</div>
 </div>
 </div>
</div>

It closely resembles the two-column example we saw earlier except the CSS attribute

for the grid is configured to support three columns (ui-grid-b) and we have added an

additional block for the third column (ui-block-c). We also styled the blocks with

themeable classes which can be added to any element including grids. In the example,

we added ui-bar to apply css padding and added ui-bar-e to apply the background

gradient and font styling for the “e” toolbar theme swatch. You may style your blocks

with any toolbar theme (ui-bar-*) in the range a through e. Lastly, to create consistent

block heights we also styled our height inline (style="height:100px"). Visually, these

enhancements have styled our grid with a linear background gradient and our blocks are

now segregated with borders.

Four-Column Grid with App Icons
A four-column (25%, 25%, 25%, 25%) grid is shown in Figure 6–4 with its related code

in Listing 6–4.

Listing 6–4. Four-column grid (ch6/grid-4col.html)

<div data-role="content">
 <div class="ui-grid-c" style="text-align: center;">
 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
 <div class="ui-block-c"></div>
 <div class="ui-block-d"></div>
 </div>
</div>

It is similar to the three-column example except the CSS attribute for the grid is

configured to support four columns (ui-grid-c) and we have added an additional block

for the fourth column (ui-block-d). Additionally, we centered the app icons within the

grid for balance and consistency (style="text-align:center;"). Visually, the grid has

evenly spaced app icons that closely resembles an application springboard.

CHAPTER 6: Formatting Content with Grids and CSS Gradients 130

Figure 6–4. Four-column grid with app icons

Five-Column Grid with Emoji Icons
A five-column (20%, 20%, 20%, 20%, 20%) grid is shown in Figure 6–5 with its related

code in Listing 6–5.

Listing 6–5. Five-column grid (ch6/grid-5col.html)

<div data-role="content">
 <div class="ui-grid-d" style="text-align: center;">
 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
 <div class="ui-block-c"></div>
 <div class="ui-block-d"></div>
 <div class="ui-block-e"></div>
 </div>
</div>

The example closely resembles the four-column grid we saw previously except the CSS

attribute for the grid is configured to support five columns (ui-grid-d) and we have

3

CHAPTER 6: Formatting Content with Grids and CSS Gradients 131

added an additional block for the fifth column (ui-block-e). Each block contains a

unique Emoji icon.1

Figure 6–5. Five-column grid

NOTE: Emoji icons are a performant alternative to images because they consume zero HTTP
requests and their payload is only a few characters of text. Unfortunately, Emoji icons are

currently only supported in iOS.

1
 See http://pukupi.com/post/1964.

http://pukupi.com/post/1964

CHAPTER 6: Formatting Content with Grids and CSS Gradients 132

Multi-Row Grid
Thus far we have only seen grids with a single row. To add an additional row, simply

repeat the block pattern of the first row for each consecutive row (see Figure 6–6 and its

related code in Listing 6–6). The resulting grid contains five columns and three rows. The

columns are evenly spaced and you may manually adjust the row height at the block

component.

Figure 6–6. Multi-row grid

Listing 6–6. Multi-row grid (ch6/grid-multi-row.html)

<div data-role="content">
 <div class="ui-grid-d" style="text-align: center;">

 <!-- First row -->
 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
 <div class="ui-block-c"></div>
 <div class="ui-block-d"></div>
 <div class="ui-block-e"></div>

CHAPTER 6: Formatting Content with Grids and CSS Gradients 133

 <!-- Second row -->
 <div class="ui-block-a"></div>
 <div class="ui-block-b"></div>
 <div class="ui-block-c"></div>
 <div class="ui-block-d"></div>
 <div class="ui-block-e"></div>

 </div>
</div>

Uneven Grids
So far, every grid example shown had evenly spaced columns because jQuery Mobile

will space all columns equally by default. However, if you need to customize the column

dimensions we can adjust the widths in CSS. For instance, we can modify the default

widths in our 2-column grid to a 25/75% grid by setting the custom width of each block

(see Figure 6–7 and its related code in Listing 6–7). As a result, our grids can be

modified to support a wide range of alternate dimensions.

Figure 6–7. Uneven grid

CHAPTER 6: Formatting Content with Grids and CSS Gradients 134

Listing 6–7. Uneven grid (ch6/grid-uneven.html)

<style>
 /* Set 2-column grid to 25/75% */
 .ui-grid-a .ui-block-a {
 width: 25%;
 }
 .ui-grid-a .ui-block-b {
 width: 75%;
 }

 /* Set 3-column grid to 25/50/25% */
 .ui-grid-b .ui-block-a {
 width: 25%;
 }
 .ui-grid-b .ui-block-b {
 width: 50%;
 }
 .ui-grid-b .ui-block-c {
 width: 25%;
 }
</style>

Springboard
A springboard is an ideal candidate for applying our grid layout. In the examples below

we will see two types of springboards. First, we will see a springboard styled with app

icons (see Figure 6–8) and secondly we will see a springboard styled with Glyphish icons

(see Figure 6–9).

CHAPTER 6: Formatting Content with Grids and CSS Gradients 135

Figure 6–8. Springboard with app icons Figure 6–9. Springboard with Glyphish icons

Are you up for a springboard challenge? If you are, I encourage you to create a

springboard that closely resembles one of the two figures. Both examples are

configured identically from a grid perspective. However, the Springboard with Glyphish

icons (see Listing 6–9) is styled slightly different than the Springboard with app icons

(see Listing 6–8) to adjust for its uneven icon heights.

Listing 6–8. Springboard with app icons (ch6/springboard1.html)

<div class="ui-grid-a">
 <div class="ui-block-a">

 App A

 </div>
 …
</div>

<style>
 /* center icons */

CHAPTER 6: Formatting Content with Grids and CSS Gradients 136

 .ui-grid-a { text-align: center; }

 /* set row height */
 .ui-block-a, .ui-block-b { height: 100px; }

 /* set label color and size */
 .icon-label { color: #000; display: block; font-size:12px; }

 a:link, a:visited, a:hover, a:active { text-decoration:none; }
</style>

Listing 6–9. Springboard with Glyphish icons (ch6/springboard2.html)

<div class="ui-grid-a">
 <div class="ui-block-a">
 <div class="icon-springboard">

 Now Playing

 </div>
 </div>
 …
</div>

<style>
 /* center icons */
 .ui-grid-a { text-align: center; }

 /* set row height */
 .ui-block-a, .ui-block-b { height: 100px; position: relative; }

 /* set label size and color */
 .icon-label { color: #FFF; display: block; font-size:12px; }

 /* bottom align icons to adjust for uneven icon heights */
 .icon-springboard { position: absolute; bottom: 0; width: 100%; }

 a:link, a:visited, a:hover, a:active { text-decoration:none; }
</style>

Collapsible Content Blocks
Do you ever find yourself scrolling repeatedly to view the contents of an entire mobile

page? Although this may be a good workout for your finger it can be a cumbersome

user experience when users must scroll repeatedly. If you are looking for a more usable

alternative, you may want to consider grouping your content into collapsible content

blocks.

CHAPTER 6: Formatting Content with Grids and CSS Gradients 137

TIP: Collapsible content blocks have several advantages when compared to an inline page
structure. First, we can collapse content into segmented groups to make them all visible within a
single view (see Figure 6–10). And secondly, our users will be more efficient because we have

eliminated scrolling from the user experience.

Figure 6–10. Content block (all blocks collapsed)

The markup required to create a collapsible content block is shown in Listing 6–10.

Listing 6–10. Collapsible content block (ch6/collapsible-block.html)

<div data-role="content">

 <div data-role="collapsible" data-collapsed="true" data-theme="a" data-content-theme="b">
 <h3>Wireless</h3>
 <ul data-role="listview" data-inset="true">
  Notifications
  Location Services

CHAPTER 6: Formatting Content with Grids and CSS Gradients 138

 </div>

 <div data-role="collapsible" data-theme="a" data-content-theme="b">
 <h3>Applications</h3>
 <ul data-role="listview" data-inset="true">
  Faceoff
  LinkedOut
  Netflicks

 </div>

</div>

There are two required elements for creating a collapsible block:

1. Create a container and add the data-role="collapsible" attribute. Optionally,

you may configure the container to be collapsed or expanded by adding the data-
collapsed attribute. By default, a collapsible section will be shown expanded

(data-collapsed="false"). To initially show the section as a collapsed block, add

data-collapsed="true" to the container. For instance, if we launch the code in

Listing 6–10, the initial view will appear as Figure 6–11. In the code listing, we

have explicitly collapsed all content blocks except for the “Applications” section

which will expand by default.

Figure 6–11. Content block (one block expanded)

CHAPTER 6: Formatting Content with Grids and CSS Gradients 139

2. Within the container, add any header element (H1-H6). The framework will style

the header to look like a clickable button with a left-aligned plus or minus icon to

indicate it’s expandable.

After the header, you may add any HTML markup to the collapsible block. The

framework will wrap this markup within the container that will expand or collapse when

the heading is tapped. You may theme the collapsible block and its associated button

separately by adding the data-theme and data-content-theme attributes to the

collapsible container (see Listing 6-10).

NOTE: A collapsible block allows you to have many blocks expanded or collapsed at once (see
Figure 6–12). In our next section, we will see this is not allowed when working with collapsible

sets.

Figure 6–12. Content block (all blocks expanded)

CHAPTER 6: Formatting Content with Grids and CSS Gradients 140

Collapsible Sets
Collapsible sets (see Figure 6–13) are similar to collapsible blocks except their

collapsible sections are visually grouped together and only one section may be

expanded at a time which gives the collapsible set the appearance of an accordion (see

Figure 6–14).

Figure 6–13. Content set (collapsed) Figure 6–14. Content set (expanded)

When opening a new section within the set, any section that was previously opened will

collapse automatically.

The markup for a collapsible set is identical to the markup we saw previously when

building a collapsible block. However, to create the accordion-style behavior and

grouping we need to add a parent wrapper with a data-role="collapsible-set" as

shown in Listing 6–11. Again, you may theme the collapsible section and its associated

button separately by adding the data-theme and data-content-theme attributes to the

collapsible set.

CHAPTER 6: Formatting Content with Grids and CSS Gradients 141

Listing 6–11. Collapsible set (ch6/collapsible-set.html)

<div data-role="content">

 <div data-role="collapsible-set" data-theme="a" data-content-theme="b">
 <div data-role="collapsible" data-collapsed="true">
 <h3>Wireless</h3>
 <ul data-role="listview" data-inset="true">
  Notifications
  Location Services

 </div>

 <div data-role="collapsible">
 <h3>Applications</h3>
 <ul data-role="listview" data-inset="true">
  Faceoff
  LinkedOut
  Netflicks

 </div>
 ...
 </div><!-- /collapsible-set -->
</div>

Styling with CSS Gradients
Looking to add a bit of polish to your mobile UI? Try using CSS gradients where you

would typically use background images. CSS gradients offer a performant alternative

to images, they work extremely well within flexible layouts, and they gracefully

degrade in unsupported browsers. For example, we can take an original springboard

(see Figure 6–15) and transform it into a much more elegant display (see Figures 6–16

and 6–17) with the addition of gradients.

CHAPTER 6: Formatting Content with Grids and CSS Gradients 142

Figure 6–15. Springboard without CSS gradients Figure 6–16. Springboard with CSS gradients (iOS))

CHAPTER 6: Formatting Content with Grids and CSS Gradients 143

Figure 6–17. Springboard with CSS gradients (Android)

Gradients can be used anywhere background images are used. For example, they are

most commonly used to style backgrounds of your header, content, and buttons.

Furthermore, there are two types of CSS gradients: linear and radial. Linear gradients

are the simpler of the two and if you are not too familiar with their syntax there are CSS

gradient generators2 available to help you get started. The CSS to generate the linear

gradient of our background is shown in Listing 6–12.

Listing 6–12. Background gradient

.background-gradient {
 background-image: -webkit-gradient(
 linear, left bottom, left top,
 color-stop(0.22, rgb(92,92,92)),
 color-stop(0.57, rgb(158,153,158)),

2
 See http://www.westciv.com/tools/gradients/ or http://gradients.glrzad.com/.

http://www.westciv.com/tools/gradients/
http://gradients.glrzad.com/

CHAPTER 6: Formatting Content with Grids and CSS Gradients 144

 color-stop(0.84, rgb(92,92,92))
);
}

<!-- Set the gradient on the page -->
<div data-role="page" class="background-gradient">

While this CSS gradient is targeted for the most popular WebKit layout engine (see

Figure 6–18) you may add support for additional browsers by including their vendor-

specific prefix.

Figure 6–18. Webkit usage

For example, to render our gradient on Mozilla browsers we would add the -moz- vendor

prefixed version (see Listing 6–13).

Listing 6–13. Background gradient with Mozilla support

.background-gradient {
 background-image: -webkit-gradient(
 linear, left bottom, left top,
 color-stop(0.22, rgb(92,92,92)),
 color-stop(0.57, rgb(158,153,158)),
 color-stop(0.84, rgb(92,92,92))
);
 background-image: -moz-linear-gradient(
 90deg,
 rgb(92,92,92),
 rgb(158,153,158),
 rgb(92,92,92));
}

CHAPTER 6: Formatting Content with Grids and CSS Gradients 145

The gradient for the header is actually an overlay of three separate gradients. Including

one linear gradient and two radial gradients. A radial gradient creates a circular gradient

effect. The code to create our header gradient is shown in Listing 6–14.

Listing 6–14. Springboard gradient

.header-gradient {
 background-image:
 -webkit-gradient(
 linear, left top, left bottom,
 from(rgba(068,213,254,0)),
 color-stop(.43, rgba(068,213,254,0)),
 to(rgba(068,213,254,1))),
 -webkit-gradient(radial,
 50% 700, 690,
 50% 700, 689,
 from(rgba(049,123,220,0)),
 to(rgba(049,123,220,1))),
 -webkit-gradient(
 radial,
 20 -43, 60,
 20 -43, 40,
 from(rgba(125,170,231,1)),
 to(rgba(230,238,250,1)));
}

<!-- Set the gradient on the header -->
<div data-role="header" class="header-gradient">

Summary
In this chapter, we reviewed the usefulness of jQuery Mobile’s grid-based design and

saw how quickly we can style content within our grid template (see Listing 6–1). The

jQuery Mobile grid is an ideal solution for content that needs to be responsive and

grouped into sections. Our grids can contain any content and we saw several examples

of grids styled with text, icons, and graphics.

We also reviewed collapsible content blocks and discussed their advantages when

compared to an inline page structure. Collapsible blocks can be an effective usability

pattern because they help display all content within a single view and they help eliminate

scrolling from the user experience. As a result, the users' experience with the app will be

more efficient.

Lastly, we saw how to polish our designs with CSS gradients. CSS gradients are a

performant alternative to images, they work extremely well within flexible layouts, and

they progressively degrade in unsupported browsers.

In Chapter 7 we will continue down our path of layout design and take a closer look at

jQuery Mobile’s theming framework.

147

 Chapter

Creating Themable
Designs
jQuery Mobile has a built-in theming framework that allows designers to quickly

customize or re-style their user interface. The theming framework takes advantage of

many CSS3 features, which helps build more elegant and responsive designs. For

instance, by leveraging CSS3, the theming framework is able to apply rounded corners,

shadows, and gradients without having to rely upon images. This is a performance

advantage in that the framework can provide a more attractive interface without the

overhead of extra HTTP requests. Essentially, we have a lightweight theming framework

that renders a unified design across all browsers.

In this chapter, we will discuss the basics of the theming framework and review the

default themes that are included in jQuery Mobile. We will also explore the three ways

themes can be assigned to components. While all components can have their theme

explicitly set with the data-theme attribute, most components also have default themes

and may also inherit their theme from a parent container. We will discuss their

advantages, look at examples of each, and discuss the precedence in which themes are

applied to components.

Lastly, we will see how we can create our own custom themes. Creating custom themes

will be necessary if you need to create richer designs or if you need to create a design

that closely matches your corporate branding. There are two options available for

creating custom themes and we will look at step-by-step examples of each. The first

option is the manual approach, which gives designers complete control of their layout;

the second is to use ThemeRoller1, a web-based tool that automates the process of

creating new themes.

1 See http://jquerymobile.com/themeroller

7

http://jquerymobile.com/themeroller

CHAPTER 7: Creating Themable Designs 148

Theme Basics
In many examples we have already seen how we can use the data-theme attribute to

apply alternate themes to our page containers (page, header, content, footer) and form

elements. For instance, we can take an un-themed page (see Figure 7–1) and re-style it

with a different header and list theme (see Figure 7–2) with the simple addition of data-
theme attributes (see Listing 7–1).

Figure 7–1. List with default theme Figure 7–2. List with alternate theme

Listing 7–1. data-theme attribute (ch7/theme-list2.html)

<div data-role="page">
 <div data-role="header" data-theme="b">
 <h1>jMovies</h1>
 </div>

 <div data-role="content">
 <ul data-role="listview" data-inset="true" data-theme="a">
 <li data-role="list-divider">Now Playing

CHAPTER 7: Creating Themable Designs 149

 </div>
</div>

Themes and Swatches
The jQuery Mobile CSS file is always the first asset we import in the head element (see

Listing 7–2). This file contains the default structure and theming for jQuery Mobile

applications. Take a moment and explore the contents of this file with your favorite

editor.

Listing 7–2. jQuery Mobile CSS import

<head>
 <link rel="stylesheet" type="text/css" href="jquery.mobile-min.css" />
 <script type="text/javascript" src="jquery-min.js"></script>
 <script type="text/javascript" src="jquery.mobile-min.js"></script>
</head>

The jQuery Mobile CSS document is broken into two sections: a theme section and a

structure section.

 Theme – The top half of the document contains the default theme

settings. The theme settings manage the visual styling (backgrounds,

borders, color, font, shadows) for all components. When setting the

data-theme attribute, we are able to choose from five different options

(a, b, c, d, e). These letters (a-e) are technically referred to as

swatches. As you were reviewing the jQuery Mobile CSS file you may

have noticed that the first swatch to appear within the CSS file was

swatch “a” (see Listing 7–3).

Listing 7–3. jQuery Mobile CSS swatch “a” (partial listing)

/* A
---*/
.ui-bar-a {
 border: 1px solid #2A2A2A;
 background: #111111;
 color: #ffffff;
 font-weight: bold;
 text-shadow: 0 -1px 1px #000000;
 ...
 background-image: linear-gradient(top, #3c3c3c, #111);
}
.ui-body-a {
 border: 1px solid #2A2A2A;
 background: #222222;
 color: #fff;
 text-shadow: 0 1px 0 #000;
 font-weight: normal;
 background-image: linear-gradient(top, #666, #222);
}
...

s

CHAPTER 7: Creating Themable Designs 150

The theme section is broken down into the following sub-sections:

 Swatches – By default, jQuery Mobile has five swatches to choose from

(a, b, c, d, e) and you may add as many unique swatches as necessary.

Swatches allow us to configure unique backgrounds, borders, colors,

fonts, and shadows for our components. For simplicity, the naming

convention for new swatches is letter based (a-z). However, there is no

limitation to the length of the swatch names. We will see examples of

creating our own custom swatches later in the chapter.

 Global theme settings – Global theme settings are configured after the

swatches. These settings add visual styling enhancements to buttons,

such as rounded corners, icons, overlays, and shadows. Since these

settings are global, they will be inherited by all swatch configurations

(see Listing 7–4).

Listing 7–4. jQuery Mobile global theme styling (partial listing)

/* Active class used as the "on" state across all themes
---*/
.ui-btn-active {
 border: 1px solid #155678;
 background: #4596ce;
 font-weight: bold;
 color: #fff;
 cursor: pointer;
 text-shadow: 0 -1px 1px #145072;
 text-decoration: none;
 ...
}

 Structure – The latter half of the jQuery Mobile CSS file contains

structure styling that primarily includes positioning, padding, margin,

height, and width settings (see Listing 7–5).

Listing 7–5. jQuery Mobile structure styling (partial listing)

/* some unsets - more probably needed */
.ui-mobile, .ui-mobile body { height: 100%; }
.ui-mobile fieldset, .ui-page { padding: 0; margin: 0; }
.ui-mobile a img, .ui-mobile fieldset { border: 0; }

...

.ui-checkbox, .ui-radio {
 position:relative; margin: .2em 0 .5em; z-index: 1;
}
.ui-checkbox .ui-btn, .ui-radio .ui-btn {
 margin: 0; text-align: left; z-index: 2;
}

Now that we have been introduced to the main CSS file for jQuery Mobile, let's take a

closer look at the five swatches that are included with jQuery Mobile and see how they

appear across several different components (see Figure 7–3–7–6).

CHAPTER 7: Creating Themable Designs 151

Figure 7–3. Grid swatches Figure 7–4. List swatches

CHAPTER 7: Creating Themable Designs 152

Figure 7–5. Button swatches Figure 7–6. Form field swatches

To keep the styling of the swatches consistent across all components, the following

visual priority conventions are used for each swatch:

 “a” - (black) highest level of visual priority.

 “b” - (blue) is secondary level.

 “c” - (gray) baseline.

 “d” - (white/gray) an alternate secondary level.

 “e” - (yellow) an accent color.

Theme Defaults
If you do not add data-theme attributes to a page, jQuery Mobile will apply default

themes for all page containers and form elements (see Table 7–1).

CHAPTER 7: Creating Themable Designs 153

Table 7–1. Themes by component

 Component Default Theme Inherit's Parent Theme? Example

 Button Inherited from parent Yes Listing 4-8

Checkbox Inherited from parent Yes Listing 4-20

Content data-theme=“c” Yes Listing 7–6

Dialog data-theme=”a” Yes Listing 2-6

Grid None Yes Listing 6-3

Footer data-theme=”a” No Listing 7–6

Header data-theme=”a” No Listing 7–6

List view data-theme=”c” No Listing 5-1

List badge data-theme=”c” No Listing 5-9

List divider data-theme=”b” No Listing 5-3

List item data-theme=”c” Yes (from list only) Listing 7–6

List split button data-theme=”b” No Listing 5-6

Page data-theme=”c” No Listing 7–5

Radio button Inherited from parent Yes Listing 4-18

Select Inherited from parent Yes Listing 4-16

Slider Inherited from parent Yes Listing 4-22

Switch Inherited from parent Yes Listing 4-24

Text input Inherited from parent Yes Listing 4-13

For instance, if we create a basic jQuery Mobile page without explicitly setting its

themes, our elements will fall back to their default theme or inherit the theme of their

CHAPTER 7: Creating Themable Designs 154

parent container. In Figure 7–7, default themes were applied to the page, header, footer,

content, and list elements, whereas the form elements inherit their themes.

Figure 7–7. Page with default and inherited themes

By referencing our “Default themes by component” Table (see Table 7–1), we can

determine what defaults will be applied for each component. Let's take a closer look at

the content and button components. By default, the content component will have data-
theme=”c” applied. However, the button component does not have a default theme, so it

will inherit its default theme from its parent container. In Listing 7–6, the button's parent

is the content container; as a result, the button will inherit theme “c”. Moreover, if the

button was within the head container, it would inherit the head container's theme.

Listing 7–6. Page with default themes (ch7/theme-defaults.html)

<div data-role="page">
 <div data-role="header">
 <h1>default = "a"</h1>
 </div>

 <div data-role="content">
 default = "c"

CHAPTER 7: Creating Themable Designs 155

 <ul data-role="listview" data-inset="true">
 <li data-role="list-divider">default = "b"
 default = "c"
 default = "c"

 <form id="test" id="test" action="#" method="post">
 <p>
 <label for="text">inherits "c":</label>
 <input type="text" name="text" id="text" value="" />
 </p>
 <p>
 <label for="sound">inherits "c":</label>
 <select name="slider" id="sound" data-role="slider">
 <option value="off">Off</option>
 <option value="on">On</option>
 </select>
 </p>

 Button (inherits "c")
 </form>
 </div>

 <div data-role="footer" data-position="fixed">
 <h3>default = "a"</h3>
 </div>
</div>

Theme Inheritance
Components can also inherit the themes of their parent containers. Theme inheritance is

beneficial in two regards. First, it makes the styling process more efficient for designers

because we can rapidly set a theme at a high level (page container) and that theme will

cascade down to all sub-components, saving valuable time. Secondly, it keeps

components styled consistently across the entire application. For instance, in Listing 7–

7, we have styled our page container with data-theme=”e”. As a result, the content

theme is inheriting the “e” theme from its parent container (see Figure 7–8).

Listing 7–7. Theme inheritance (ch7/theme-inheritance.html)

<div data-role="page" data-theme="e">
 <div data-role="header">
 <h1>No inheritance</h1>
 </div>

 <div data-role="content">
 Inherits "e"

 <ul data-role="listview" data-inset="true">
 <li data-role="list-divider">No inheritance
 No inheritance
 No inheritance

CHAPTER 7: Creating Themable Designs 156

 <form id="test" id="test" action="#" method="post">
 <p>
 <label for="text">Inherits "e"</label>
 <input type="text" name="text" id="text" value=""/>
 </p>
 <p>
 <label for="sound">Inherits "e"</label>
 <select name="slider" id="sound" data-role="slider">
 <option value="off">Off</option>
 <option value="on">On</option>
 </select>
 </p>

 Button (Inherits "e")
 </form>
 </div>

 <div data-role="footer" data-position="fixed">
 <h3>No inheritance</h3>
 </div>
</div>

Figure 7–8. Theme inheritance

CHAPTER 7: Creating Themable Designs 157

NOTE: Not all components will inherit the theme of their parent container. Refer to the “Inherits

Parent Theme” column in Table 7–1 for a listing of components that will not inherit a parent theme.

We can also explicitly set the themes of our individual components. This gives the

designer flexibility in regards to styling sites and can help build more rich designs (see

Figure 7–9 and its related code in Listing 7–8).

Figure 7–9. Explicit themes

Listing 7–8. Explicit themes (ch7/theme-explicit.html)

<div data-role="page" data-theme="e">
 <div data-role="header" data-theme="b">
 <h1>Theme = "b"</h1>
 </div>

 <div data-role="content" data-theme="d">
 Theme = "d"

 <ul data-role="listview" data-theme="e" data-divider-theme="e">

CHAPTER 7: Creating Themable Designs 158

 <li data-role="list-divider">Theme = "e"
 Inherits "e" from list
 <li data-theme="b">Theme = "b"

 <form id="test" id="test" action="#" method="post">
 <p>
 <label for="text">Theme "d"</label>
 <input type="text" name="text" id="text" data-theme="d" />
 </p>
 <p>
 <label for="sound">Theme "b"</label>
 <select id="sound" data-role="slider" data-theme="b">
 <option value="off">Off</option>
 <option value="on">On</option>
 </select>
 </p>

 Button
 </form>
 </div>

 <div data-role="footer" data-position="fixed" data-theme="b">
 <h3>Theme = "b"</h3>
 </div>
</div>

Theme Precedence
Themes are applied to components with the following order of precedence:

1. Explicit themes—If you explicitly set the data-theme attribute on any component,

that theme will override any inherited or default theme.

2. Inherited themes—Inherited themes will override all default themes. For instance,

in Listing 7–7, the content container inherited theme “e” from its page container

which overrode its default theme “c”. For a list of components that may inherit

their theme, refer to the “Inherit's Parent Theme” column in Table 7–1.

3. Default themes—Default themes are applied when no themes are explicitly set or

inherited. For a listing of default themes by component, refer to the “Default

Theme” column in Table 7–1.

TIP: By default, the minimum height of the content container will only stretch the height of the

components inside. This is an issue when the theme of the content is different than the theme of
its page container (see Figure 7–10). We can remedy this issue with CSS. For instance, we can
set the minimum height of our content container to the height of the screen (see Figure 7–11):

.ui-content { min-height:inherit; }

CHAPTER 7: Creating Themable Designs 159

Figure 7–10. Content height not 100% Figure 7–11. Content height 100% (ch7/min-height.html)

Custom Themes
The jQuery Mobile theming framework allows designers to quickly customize or re-style

their user interface. In this section, we will see how we can manually create our own

custom swatches. As reviewed previously, the default jQuery Mobile CSS document is

broken into two sections: a theme section and a structure section. For this exercise we

are going to create a custom swatch that we can reference for potentially dangerous

actions. For instance, a common user experience guideline encourages developers to

highlight buttons that control potentially harmful actions in red. In jQuery Mobile, we can

create a custom swatch to manage the visual styling (backgrounds, borders, color, font,

shadows) of icons and/or buttons that drive our risky actions.

CHAPTER 7: Creating Themable Designs 160

To create a custom swatch manually the following steps are necessary:

1. First, create a separate CSS file for the custom theme (css/theme/custom-

theme.css). This keeps the custom additions separate from the main jQuery

Mobile CSS and will simplify future upgrades.

TIP: If you plan to style your entire jQuery Mobile application with custom themes it is
recommended to use the structure-only CSS file from jQuery Mobile's download site2. This is a

lightweight alternative for applications that do not need the default themes and it simplifies the

management of the custom themes (see Listing 7-9).

Listing 7-9. jQuery Mobile's structure file without default themes

<head>
 <meta charset="utf-8">
 <title>Custom Theme</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel=stylesheet href="css/theme/custom-theme.css" />
 <link rel=stylesheet href="css/structure/jquery.mobile.structure.css"/>
 <script type="text/javascript" src="jquery-min.js"></script>
 <script type="text/javascript" src="jquery.mobile-min.js"></script>
</head>

2. Find an existing swatch to reference as a baseline. After studying the existing

swatches, copy one that will closely resembles the style of your new swatch. This

will help minimize the number of modifications you will have to make in order to

create your new swatch. For my new swatch, I copied the “e” swatch as my

baseline because “e” is an accent swatch and our new swatch for potentially

dangerous actions can be segmented into the accent category too.

3. Next, copy the baseline swatch and paste it into the custom-theme.css file. Then,

rename the swatch so it is associated to a unique letter (f-z). For example, replace

all CSS suffixes with “-e” to “-v” (see Listing 7-10). The new swatch can now be

referenced with data-theme=”v” for any components that perform dangerous

actions.

Listing 7-10. Custom “v” swatch modeled after swatch “e” (ch7/css/theme/custom-theme1.css)

/* V
--*/
.ui-bar-v {
 font-weight: bold;
 border: 1px solid #999;
 background: #dedede;
 color: #000;

2 See http://jquerymobile.com/download.

http://jquerymobile.com/download

CHAPTER 7: Creating Themable Designs 161

 text-shadow: 0 1px 0px #fff;
 …
}
.ui-btn-up-v {
 border: 1px solid #999;
 background: #e79696;
 color: #fff;
 text-shadow: 0 1px 0px #fff;
 ...

}

4. Now the exciting task of updating the visual CSS settings (backgrounds, borders,

color, font, and shadows) for our new swatch. For the new “v” swatch, I updated

all buttons to have a red gradient background with white text (see Listing 7-11).

Listing 7-11. Update “v” swatch buttons with red background gradient and white text (ch7/css/theme/custom-
theme1.css)

/* V
--*/
.ui-btn-up-v {
 border: 1px solid #999;
 background: #e79696;

 color: #fff;

 text-shadow: 0 1px 0px #fff;
 background-image: -webkit-gradient(
 linear, 0% 0%, 0% 100%, from(#E79696), to(#ce2021),
 color-stop(.4,#E79696)
);
 background-image: -webkit-linear-gradient(
 0% 56% 90deg,#CE2021, #E79696, #E79696 100%
);
 background-image: -moz-linear-gradient(
 0% 56% 90deg,#CE2021, #E79696, #E79696 100%
);

 ...

}

5. Next, we need to integrate our new “v” swatch with an actual page for testing. I

created two pages to help test the new “v” swatch. On the first page, I wanted to

see how the new swatch appeared on an icon-only button. For this test, I created

a split button list with the secondary button as our delete icon and styled the

secondary button with our new “v” swatch (see Figure 7-12 and its related code in

listing 7-12).

CHAPTER 7: Creating Themable Designs 162

Figure 7-12. Red icon background for potentially dangerous actions

Listing 7-12. Split buttons with “v” swatch (ch7/custom1.html)

<head>
 <link rel=stylesheet href="css/theme/custom-theme1.css" />
 <link rel=stylesheet href="css/structure/jquery.mobile-min.css"/>
 ...
</head>

<ul data-role="listview" data-split-icon="delete" data-split-theme="v">

 <h3>Kung Fu Panda</h3>
 <p>Rated: PG</p>
 <p>Runtime: 95 min.</p>
 </a
 Delete

...

CHAPTER 7: Creating Themable Designs 163

I also imported our new custom-theme.css file before the main jQuery Mobile CSS file.

For our second test, I wanted to apply our new “v” swatch on a delete button. For this

test, I created a dialog to confirm the potentially dangerous action and styled the delete

button with the our new red gradient styled theme (see Figure 7-13 and its related code

in Listing 7-13).

Figure 7-13. Red delete button for delete action

Listing 7-13. Delete button with “v” swatch (ch7/custom1.html)

<div data-role="dialog" id="delete">
 <div data-role="content" data-theme="c">
 Are you sure?

 Delete
 Cancel
 </div>
</div>

Lastly, as you create new swatches, it will be helpful to document your custom styles

within a color-coded style guide so all designers and developers within the organization

will be familiar with their usage and style.

CHAPTER 7: Creating Themable Designs 164

TIP: CSS gradient generators3 are tools that can automate the generation of your gradient syntax

and help simplify step 4.

ThemeRoller
ThemeRoller4 is a web-based tool that helps automate the process of generating new

CSS-based themes for jQuery Mobile. This is a very helpful tool because it allows you to

make color scheme updates in the left pane and preview the results in the right pane

within an actual jQuery Mobile layout (see Figure 7-14).

Figure 7-14. ThemeRoller

3
 See http://www.westciv.com/tools/gradients/ or http://gradients.glrzad.com/.

4 See http://jquerymobile.com/themeroller.

http://www.westciv.com/tools/gradients/
http://gradients.glrzad.com/
http://jquerymobile.com/themeroller

CHAPTER 7: Creating Themable Designs 165

Swatch and Global Settings
You can quickly adjust the CSS attributes that apply globally to all swatches under the

“Global” tab that appears in the left pane. Here you can adjust the font family, active

state colors, corner radii, icons, and shadows (see Figure 7-15).

Figure 7-15. Global Theme Settings

Next to the “Global” tab are the swatch specific tabs (a-z). Here you may add, edit or

delete a swatch from your theme (see Figure 7-15).

CHAPTER 7: Creating Themable Designs 166

Preview Inspector and QuickSwatch Bar
To make it even easier to build custom themes there are two unique tools at the top of

the preview panel: Preview Inspector and the QuickSwatch Bar.

The Preview Inspector is a toggle that can be either “On” or “Off” (see Figure 7-16). With

the toggle “On”, clicking on an element in the preview pane will automatically show its

editable attributes in the left pane. This will be a valuable timesaver when you need to

quickly edit styles.

Figure 7-16. Preview inspector and QuickSwatch bar

The QuickSwatch Bar is a spectrum of colors that appears to the right of the Inspector

(see Figure 7-16). This is a powerful tool that allows you to drag and drop any color onto

an element in the preview page or onto a color attribute in the left pane. Below the

QuickSwatch bar are two sliders to adjust the lightness and saturation of your color

pallet. Additionally, the most recent selected colors will be shown to the right of the

color spectrum for quick reuse.

CHAPTER 7: Creating Themable Designs 167

Adobe Kuler Integration
It can be challenging when you need to create a color pallet from scratch. To help simplify

this process, ThemeRoller has Adobe's Kuler5 integration built-in (see Figure 7-17).

Figure 7-17. Adobe's Kuler App

Kuler is a site that allows people to create, share, and rate color pallets. To see the color

pallets that are available in Kuler click the “Adobe Kuler” link that appears above the

QuickSwatch Bar. When the Kuler app opens, a search filter appears in the left pane that

allows you to filter by latest, popular, rating, or custom search. When you find a color of

interest, simply drag and drop the color onto an element in your preview pane.

Getting Started
For comparison purposes, I am going to create a red accent swatch in ThemeRoller to

see how this experience compares to the manual swatch we created in the previous

section. In this exercise, I am going to override jQuery Mobile's default “e” swatch with

the new red accent swatch. In ThemeRoller, to update an existing theme the following

steps are necessary:

1. In ThemeRoller, import an existing theme by clicking the “Import” link in the upper

left corner (see Figure 7-18). For this exercise I am going to import and modify

jQuery Mobile's default theme.

Figure 7-18. Import Existing Theme

2. After the theme is imported, identify the swatch to modify. For this step, I am

going to modify the default “e” swatch.

3. Next, find an appropriate base color for our red accent swatch. We can find an

appropriate red color in either the QuickSwatch Bar or Kuler integration tool.

5 See http://kuler.adobe.com.

http://kuler.adobe.com

CHAPTER 7: Creating Themable Designs 168

4. After finding an appropriate base color we can now update the elements in our

preview pane with the chosen color. For example, I am going to style the header

and all elements with a deep red accent color.

5. In the preview pane, make any necessary adjustments. For instance, you may

want to adjust the colors slightly or add subtle effects with background gradients.

As expected, ThemeRoller makes the editing and preview process much more

efficient compared to the manual approach!

6. After you are comfortable with the layout of the new theme, you can download the

CSS of the theme by clicking on the “Download Theme” link in the upper left

corner of ThemeRoller (see Figure 7-19).

Figure 7-19. Download Theme

7. We can now begin referencing the new theme in our application (see Listing 7-14

and its related screenshot in Figure 7-20). Again, to help simplify the management

of the custom themes it is recommended to load the structure file and your

custom themes separately.

Listing 7-14. ThemeRoller custom theme import (ch7/custom2.html)

<head>
 <meta charset="utf-8">
 <title>Custom Theme</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel=stylesheet href="css/theme/custom-theme2.css" />
 <link rel=stylesheet href="css/structure/jquery.mobile.structure.css"/>
 <script type="text/javascript" src="jquery-min.js"></script>
 <script type="text/javascript" src="jquery.mobile-min.js"></script>
</head>

<div data-role="dialog" id="delete">
 <div data-role="content" data-theme="c">
 Are you sure?

 Delete
 Cancel
 </div>
</div>

CHAPTER 7: Creating Themable Designs 169

Figure 7-20. ThemeRoller's red delete button

Summary
The jQuery Mobile theming framework is an object-oriented CSS3 framework that is

lightweight, customizable, and renders unified designs across all browsers. In this

chapter, we discussed the basics of the theming framework and reviewed the five

swatches that are included in jQuery Mobile.

We also reviewed the three ways themes can be assigned to components. While all

components can have their theme explicitly set with the data-theme attribute, most

components also have default themes and can also inherit their theme from a parent

container. We saw examples of each and reviewed the precedence in which themes are

applied to components.

Lastly, we saw how to create our own custom swatches. Whether you need to create a

richer design or you need to create a design that closely matches your corporate

branding, the theming framework is flexible enough for all requirements. We reviewed

the two options available for creating custom swatches and saw step-by-step examples

CHAPTER 7: Creating Themable Designs 170

of each. We saw that the manual approach gives us complete control of our layout, and

that jQuery Mobile's new ThemeRoller provides a more efficient, intuitive working

environment.

In our next chapter, we are going to take an in-depth look at the jQuery Mobile API. We

will learn how to configure jQuery Mobile and we will also review the API's core

methods, events, properties, and data attributes.

171

 Chapter

jQuery Mobile API
All well-written frameworks allow developers to extend and override default
configuration settings. Additionally, they provide convenience methods to help simplify
your code. jQuery Mobile includes a fairly extensive API that exposes each of these
convenient features. First, we will look at how to configure jQuery Mobile. We will review
each configurable feature within jQuery Mobile, highlight its default setting, and show
how the API allows you to configure each option. Then, we will explore the most popular
methods, page events, and properties that jQuery Mobile exposes. These API features
are useful when you need to programmatically update your Mobile Web applications.
Lastly, we will review a sorted table listing of all jQuery Mobile data attributes. For each
attribute, we will include a brief description, example, and figure of its enhanced
component.

Configuring jQuery Mobile
When jQuery Mobile initializes, it triggers a mobileinit event on the document object.
You can bind to the mobileinit event and apply overrides to jQuery Mobile’s ($.mobile)
default configuration settings. In addition, you can extend jQuery Mobile with additional
behavior and properties. For instance, there are two ways to configure jQuery Mobile as
shown in the examples below. You can either override the properties via jQuery’s extend
method or individually.

Examples:

// Configure properties via jQuery's extend method
$(document).bind("mobileinit", function(){
 $.extend($.mobile, {
 // Override loading message
 loadingMessage: "Loading...",

 // Override default transition from “slide” to “pop”
 defaultTransition: "pop"
 });
});

8

CHAPTER 8: jQuery Mobile API 172

// Configure properties individually
$(document).bind("mobileinit", function(){
 $.mobile.loadingMessage = "Initializing";
 $.mobile.defaultTransition = "slideup";
});

Custom Script Placement
Since mobileinit gets triggered immediately upon execution of jQuery Mobile, you need
to place your custom script before the jQuery Mobile JavaScript file.

Example:

<head>
 <script type="text/javascript" src="jquery-min.js"></script>
 <script type=”text/javascript” src="custom-scripts-here.js"></script>
 <script type="text/javascript" src="jquery.mobile-min.js"></script>
</head>

Configurable jQuery Mobile Options
The following are configurable $.mobile options you may override within your custom
JavaScript.

 activeBtnClass(string, default: "ui-btnactive")

The CSS class used to identify and style the "active" button. This CSS attribute
is commonly used to style and identify the active button in a tab bar.

 activePageClass(string, default: "ui-page-active")

The CSS class assigned to the page or dialog that is currently visible and active.
For instance, when multiple pages are loaded in the DOM the active page will
have this CSS attribute applied.

 ajaxEnabled(boolean, default: true)

Dynamically load pages via Ajax when possible. Ajax loading is on by default for
all pages except external URL’s, or links that are marked with a rel="external"
or target="_blank" attribute. If Ajax is disabled, page links will be loaded with
regular HTTP requests without CSS transitions.

 allowCrossDomainPages(boolean, default: false)

When developing with PhoneGap, it is recommended to set this
configuration option to true. This allows jQuery Mobile to manage the
page loading logic of cross-domain requests in PhoneGap.

CHAPTER 8: jQuery Mobile API 173

autoInitializePage(boolean, default: true)

For advanced developers that want total control of the initialization
sequence of a page, you may set this config option to false, which
disables auto-initialization of all page components. This allows
developers to manually enhance each control on demand.

defaultDialogTransition(string, default: "pop")

The default transition to use when transitioning to a dialog. You may
set the transition to "none" for no transition.

defaultPageTransition(string, default: "slide")

The default transition to use when transitioning to a page. You may set
the transition to "none" for no transition.

gradeA(function that returns a boolean, default: browser must support
media queries or support IE 7+);

jQuery Mobile will call this method to determine if the framework will
apply dynamic CSS page enhancements. By default, the method will
apply enhancements for all browsers that support media queries;
however, jQuery Mobile will only enhance pages for grade-A browsers.
IE 7 and above are included as grade-A browsers and their displays
will be enhanced too For instance, this is the current function for
$.mobile.gradeA:

$.mobile.gradeA: function(){
 return $.support.mediaquery ||
 $.mobile.browser.ie && $.mobile.browser.ie >= 7;
}

hashListeningEnabled(boolean, default: true)

Automatically load and show pages based on location.hash. jQuery Mobile
listens for location.hash changes to load internal pages within the DOM. You
can disable this and handle the hash changes manually or disable this option to
access an anchor’s bookmark as a deep link.

loadingMessage(string, default: "loading")

Sets the loading message to appear during Ajax-based requests. Additionally,
you can assign a false (boolean) to disable the message. Also, if you want to
update the loading message at runtime on a per-page basis you can update it
within your page.

CHAPTER 8: jQuery Mobile API 174

Example:

// Update loading message
$.mobile.loadingMessage = "My custom message!";

// Show loading message
$.mobile.showPageLoadingMsg();

 minScrollBack(string, default: 250)

Sets the minimum scroll distance that will be remembered when returning to a
page. When returning to a page, the framework will automatically scroll to the
position or link that launched the transition when the scroll position of that link is
beyond the minScrollBack setting. By default, the scroll threshold is 250 pixels.
If you want to eliminate the minimum setting so the framework always scrolls
regardless of the scroll position, set this value to "0". If you want to disable this
feature, set the value to "infinity".

 nonHistorySelectors(string, default: "dialog")

You can specify which page components to exclude from the browser's history
stack. By default, any link with data-rel="dialog" or any page with data-
role="dialog" will not appear in history. Furthermore, these non-history selector
components will not have their URL updated when navigating to their page and
as a result they will not be bookmarkable.

 ns(string, default: "")

The namespace for custom data-* attributes within jQuery Mobile. Data
attributes are a new feature within HTML5. For instance, "data-role" is the
default namespace for the role attribute. If you wanted to override the default
namespace globally you would override the $.mobile.ns option.

Example:

// Set a custom namespace
$.mobile.ns = "jqm-";

As a result, all of your jQuery Mobile data-* attributes will require the prefix
"data-jqm-". For instance, the "data-role" attribute now becomes "data-jqm-
role".

CHAPTER 8: jQuery Mobile API 175

IMPORTANT: If you update the default namespace you will need to update one CSS
selector found within the jQuery Mobile CSS file:

// Original CSS for default namespace:

.ui-mobile [data-role=page],

.ui-mobile [data-role=dialog],

.ui-page {..}

// Updated CSS for the new namespace "jqm-":

.ui-mobile [data-jqm-role=page],

.ui-mobile [data-jqm-role=dialog],

.ui-page {..}

Why override the default namespace?

First off, if you are designing a JavaScript framework that includes HTML5
data-* attributes, the W3C recommends that you include a hook to allow the
developers to customize namespaces to avoid collisions with third party
frameworks. And anytime you encounter a namespace collision with another
third-party framework you will need to change your default namespace.

 page.prototype.options.addBackBtn(boolean, default: false)"

If you want the back button to appear across your application, set this
option to true. The back button within jQuery Mobile is a smart
widget. It will only appear when there is a page in the history stack to
go back to.

Example:

$.mobile.page.prototype.options.addBackBtn = true;

 page.prototype.options.keepNative(string, default:

:jqmData(role='none'),:jqmData(role='nojs')"

If you want to prevent auto-initialization without adding data-
role=”none” to your markup, you can customize the keepNative
selector that is used for preventing auto-initialization. For instance, to
prevent the framework from initializing all select and input elements we
can update this selector.

Example:

$.mobile.page.prototype.options.keepNative = "select, input";

 pageLoadErrorMessage(string, default: "Error Loading Page")

The error response message that appears when an Ajax page request fails to
load.

CHAPTER 8: jQuery Mobile API 176

 subPageUrlKey(string, default: "ui-page")

The URL parameter used for referencing widget-generated sub-pages.
An example of a sub-page URL would appear as "nested-list.html&ui-
page=Movies-3". A nested list view is a particular widget which
segments each list into individual sub-pages. For example, the URL
shown previously has a "Movies" sub-list that jQuery Mobile
transformed into its own subpage to accommodate a deep link
reference. If you need to rename this URL parameter, you can change
it with $.mobile.subPageUrlKey.

 touchOverflowEnabled(boolean, default: false)

In order to achieve true fixed toolbars with native momentum scrolling,
a browser needs to either support position:fixed or overflow:auto.
Fortunately, new releases of WebKit (iOS5) are beginning to support
this behavior. It is very likely that this option will become enabled by
default. Until this occurs, we can enable this behavior by setting this
configuration option to true.

Methods
jQuery Mobile exposes a suite of methods that are helpful when you need to
programmatically update your Mobile Web application.

 $.mobile.changePage()

The changePage function handles all the details of transitioning from one page
to another.

Usage

$.mobile.changePage(toPage, [options])

Arguments

 toPage (sting or jQuery collection). The page to transition to.

 toPage (string). A file URL ("contact.html") or internal element’s ID
("#contact").

 toPage (object). A jQuery collection object containing a page
element as its first argument: $(“#contactPage”)

options (object). A set of key/value pairs that configure the changePage request.
All settings are optional.

 allowSamePageTransition (boolean, default: false). The
changePage method will ignore requests that transition to the
same page. Set this option to true to allow same page
transitions.

CHAPTER 8: jQuery Mobile API 177

 changeHash (boolean, default: true). Update the hash to the
toPage’s URL when the page change is complete.

 data (string or object, default: undefined). The data to send to an
Ajax page request.

 dataUrl (string, default: toPage URL). Sets the URL to show in
the browser's location field.

 fromHashChange (boolean, default: false). To indicate if the
changePage came from a hashchange event.

 fromPage (string, default: $.mobile.activePage). Specifies the
from page.

 pageContainer (jQuery collection, default:
$.mobile.pageContainer). Specifies the element that should
contain the page after it is loaded.

 reloadPage (boolean, default: false). Force a reload of the page
even if it is already in the DOM of the page container.

 reverse (boolean, default: false). To indicate if the transition
should go forward or reverse. The default transition is forward.

 role (string, default: “page”). The data-role value to be used
when displaying the page. For dialogs use "dialog".

 showLoadMsg (boolean, default: true). Display the loading
message when a page is requested.

 transition (string, default: $.mobile.defaultTransition).The
transition to apply for the change page. The default transition is
slide.

 type (string, default: “get”). Specifies the method (“get” or
“post”) to use when making a page request.

Example #1:

//Transition to the "contact.html" page.
$.mobile.changePage("contact.html");

<!-- Markup equivalent when link clicked -->
Contact Us

Example #2:

// Transition to the internal "#contact" page with a reverse "pop" transition.
$.mobile.changePage(”#contact”, { transition: "pop", reverse: true });

<!-- Markup equivalent when link clicked -->
<a href="contact.html" data-transition="pop" data-
direction="reverse">Contact

CHAPTER 8: jQuery Mobile API 178

Example #3:

/* Dynamically create a new page and open it */

// Create page markup
var newPage = $("<div data-role=page data-url=hi><div data-role=header>
 <h1>Hi</h1></div><div data-role=content>Hello Again!</div></div>");

// Add page to page container
newPage.appendTo($.mobile.pageContainer);

// Enhance and open new page
$.mobile.changePage(newPage);

 $.mobile.hidePageLoadingMsg()

Remove or hide the page loading message
($.mobile.loadingMessage). The default loading message is "loading"
and this is configurable as well. To show the loading message, see
$.mobile.showPageLoadingMsg().

Example:

// Remove the loading message
$.mobile.hidePageLoadingMsg();

 $.mobile.loadPage()

The loadPage function loads a page into the DOM of the current page and
enhances it. This method is also exposed as a data attribute and can be
attached to links or buttons (see “data-prefetch”, in Data Attributes Section).

Usage

$.mobile.loadPage(url, [options])

Arguments

url (sting). The page to load.

 url (string). A file URL ("contact.html").

options (object). A set of key/value pairs that configure the changePage request.
All settings are optional.

 data (string or object, default: undefined). The data to send to an
Ajax page request.

 loadMsgDelay (number (in ms), default: 50). Add a manual delay
before the loading message is shown. This delay allows the
framework to load a cached page without a loading message.

 PageContainer (jQuery Collection, default:
$.mobile.pageContainer).The element that should contain the
page after it is loaded.

CHAPTER 8: jQuery Mobile API 179

 reloadPage (boolean, default: false). Force a reload of the page
even if it is already in the DOM of the page container.

 role (string, default: @data-role attribute). The data-role to load
the page with. The default is the @data-role attribute defined on
the element.

 showLoadMsg (boolean, default: true). Display the loading
message when a page is requested.

 type (string, default: "get"). Specifies the method ("get" or
"post") to use when making a page request.

Examples:

// Dynamically load a page and transition to it.
$.mobile.loadPage("page1.html");

$.mobile.changePage("#page1"); // data-url value

 $.mobile.showPageLoadingMsg()

Show the page loading message ($.mobile.loadingMessage).

Example:

// Show the page loading message
$.mobile.showPageLoadingMsg();

 $.mobile.silentScroll(number)

Scrolls the page vertically. Within the framework, silentScroll is called
whenever a page gets restored. For example, when you click on the back button
the silentScroll method gets triggered before the prior page is shown and will
restore the prior page's scroll position. Focus will be on the component that
triggered the initial transition. The scrollstart and scrollstop events will not
get triggered during a silentScroll.

Example:

// Hide the iOS address bar
$.mobile.silentScroll(0);

// Scroll down 400 pixels
$.mobile.silentScroll(400);

CHAPTER 8: jQuery Mobile API 180

 $.jqmData()

This is the mobile version of the jQuery .data() method.1 This method
provides all functionality found within $.data() plus it ensures all data
is set and retrieved using jQuery Mobile’s data namespace
($.mobile.ns).

Examples:

// Find all pages (data-role="page") in the DOM via a selector.
var $pages = $(":jqmData(role='page')");

// Find the theme (data-theme) for the first page
var firstPage = $pages.first();
var theme = $.jqmData(firstPage, "theme");

 $.jqmHasData()

This is the mobile version of the jQuery .hasData() method.2 This method
provides all functionality found within $.hasData() plus it ensures all data is
retrieved using jQuery Mobile’s data namespace ($.mobile.ns).

Examples:

// Does a theme exist for the first page
var hasTheme = $.jqmHasData(firstPage, "theme");

 $.jqmRemoveData()

This is the mobile version of the jQuery .removeData() method.3 This method
provides all functionality found within $.removeData() plus it ensures all data is
removed using jQuery Mobile’s data namespace ($.mobile.ns).

Examples:

// Set data on the first page
$.jqmData(firstPage, "testData", "testValue");

// Remove the data from the first page
$.jqmRemoveData(firstPage, "testData");

1 http://api.jquery.com/jQuery.data/

2 http://api.jquery.com/jQuery.hasData/

3 http://api.jquery.com/jQuery.removeData/

http://api.jquery.com/jQuery.data/
http://api.jquery.com/jQuery.hasData/
http://api.jquery.com/jQuery.removeData/

CHAPTER 8: jQuery Mobile API 181

Events
jQuery Mobile also exposes several events that are helpful when you need to
programmatically apply pre or post processing during page changes within your Mobile
Web application. In this section we will review the complete list of jQuery Mobile page
events that you may bind to in your own code. For an introduction of the jQuery Mobile
events lets begin with a diagram (Figure 8-1). This diagram shows the main page events
that occur within jQuery Mobile and helps depict the sequence of each event in the page
change lifecycle.

CHAPTER 8: jQuery Mobile API 182

Figure 8-1. jQuery Mobile Page Events

w

CHAPTER 8: jQuery Mobile API 183

Now that we have seen the sequence in which page events are triggered within the page
change lifecycle, let's look at the details of each specific event.

Events Overview
 mobileinit

When jQuery Mobile initializes, it triggers a mobileinit event on the document
object. You can bind to the mobileinit event and apply overrides to jQuery
Mobile’s default configuration settings. Refer to Section, “Configuring jQuery
Mobile”, for examples of binding to the mobileinit event.

Page Change Events
Page change events are automatically triggered on the document when you navigate to
another page. Internally, these events are trigger when the $.mobile.changePage method
is called. During this process, two events will be fired. The first event triggered is
pagebeforechange. The next event to fire is dependent upon the status of the page
change. When the page change is successful, the pagechange event will be triggered
and if the page change fails, the pagechangefailed event fires.

pagebeforechange

This is the first event that gets triggered during a page change. Callbacks for
this event are passed two arguments. The first is the event and the second
argument is a data object. You may cancel the page change by calling
preventDefault on the event. Additionally, you can override the page change by
inspecting and updating the data object. The data object, passed as the second
argument, contains the following properties:

toPage (string). A file URL or a jQuery Collection object. This is
the same argument that was passed to $.mobile.changePage().

options (object). These are the same options that were passed to
$.mobile.changePage.

Example:

$(document).bind("pagebeforechange", function(e, data) {
 console.log(“Change page starting...”);

 // Get the page
 var toPage = data.toPage;

 // Get the page options
 var options = data.options;

 // Inspect toPage or override options (redirect)…

 // Prevent a page change
 e.preventDefault();
});

v

CHAPTER 8: jQuery Mobile API 184

 pagechange

This is the last event to trigger after a successful page change. Callbacks for this
event are passed two arguments. The first is the event and the second argument
is a data object. The data object, passed as the second argument, contains the
following properties:

 toPage (string). A file URL or a jQuery Collection object. This is the
same argument that was passed to $.mobile.changePage().

 options (object). These are the same options that were passed to
$.mobile.changePage.

Example:

$(document).bind("pagechange", function(e, data){
 console.log(“Change page successfully completed...”);
 var toPage = data.toPage;
 var options = data.options;
});

 pagechangefailed

This event is triggered if the page change fails. The callbacks for this
event are passed two arguments. The first is the event and the second
argument is a data object. The data object, passed as the second
argument, contains the following properties:

 toPage (string). A file URL or a jQuery Collection object. This is the same
argument that was passed to $.mobile.changePage().

 options (object). These are the same options that were passed to
$.mobile.changePage.

Example:

$(document).bind("pagechangefailed", function(e, data){
 console.log(“Page change failed...”);
});

Page Load Events
Page load events get triggered on the document when the framework loads a page into
the DOM. Programmatically, this event is trigger when $.mobile.loadPage is called.
During this process, loadPage() will fire off two events. The first is pagebeforeload and
the second event is either a success (pageload) or failure (pageloadfailed) event.

CHAPTER 8: jQuery Mobile API 185

 pagebeforeload

This is the first event to trigger during a page load. Callbacks for this event are
passed two arguments. The first is the event and the second argument is a data
object. You can manually handle the loading logic if you choose. To accomplish
this, you must call preventDefault() on the event and call either resolve() or
reject() on the deferred object reference contained in the data object. The data
object, passed as the second argument, contains the following properties:

 url (string). The relative URL that was sent to
$.mobile.loadPage().

 absUrl (string). An absolute reference of the URL.

 dataUrl (string). The version of the URL actually stored in the
data-url attribute of the page. This URL is shown in the browser's
location field.

 deferred (object). Callbacks that call preventDefault() to
manually handle the page loading must call resolve() or
reject() on this object so the changePage() request can resume
processing.

 options (object). This is the same options argument that was
passed to $.mobile.loadPage().

Example:

$(document).bind("pagebeforeload", function(e, data){
 console.log("Page load starting…");

 // Let the framework know we're manually loading the page
 e.preventDefault();

 // Manually load the document and insert it into the DOM
 var response = manuallyLoadPage();

 if (response.status = "success") {
 // Call resolve passing in the url, options, and jQuery
 // collection object containing the DOM element for the page
 data.deferred.resolve(data.absUrl, data.options,
 response.page);
 } else {
 // The load failed, call reject
 data.deferred.reject(data.absUrl, data.options);
 }
});

 pageload

This event is triggered after the page is successfully loaded into the DOM.
Callbacks for this event are passed two arguments. The first is the event and the
second is a data object. The data object, passed as the second argument,
contains the following properties:

CHAPTER 8: jQuery Mobile API 186

 url (string). The relative URL that was sent to
$.mobile.loadPage.

 absUrl (string). An absolute reference of the URL.

 dataUrl (string). The version of the URL actually stored in the
data-url attribute of the page. This URL is shown in the browser's
location field.

 options (object). This is the same options argument that was
passed to $.mobile.loadPage().

Example:

$(document).bind("pageload", function(e, data){
 console.log("Page successfully loaded into DOM...");
});

 pageloadfailed

 This event is triggered if the page load fails. During this process, the
framework will display a page failed message and call reject() on the
deferred object. Callbacks can prevent this default behavior from
executing by calling preventDefault() on the event.

Example:

$(document).bind("pageloadfailed", function(e, data){
 console.log("Page load failed...");
});

Page Initialization Events
Page initialization events get triggered on the page before and after the jQuery Mobile
enhances the page. You may bind to these events to pre-parse the markup before the
framework enhances the page or afterwards to setup DOM ready event handlers. These
events are only triggered once during the lifecycle of a page.

 pagebeforecreate

Triggered on the page being initialized during a page change. This
event occurs after the page container has been inserted into the DOM,
but before the page has been enhanced. This is the preferred location
to pre-parse the markup before the framework enhances the page.
For instance, in this event you may dynamically create and append
new page widgets or modify existing data-attributes.

Example:

$("#to-page-id").live("pagebeforecreate", function(){
console.log("Pre-parse the markup before the framework enhances the widgets");
});

CHAPTER 8: jQuery Mobile API 187

 pagecreate

Triggered on the page that is being initialized during a page change. This is the
event that gets triggered by the framework to initialize all page plugins. If you
create custom page plugins this is the preferred location to initialize them.

Example:

$("#to-page-id").live("pagecreate", function(){
 console.log(“Page plugins are being initialized...”);

 // Initialize custom plugins
 (“:jqmData(role='my-plugin')”).myPlugin();
});

 pageinit

Triggered on the page that is being initialized after enhancements are complete.
The page is now in a DOM ready state.

Example:

$("#to-page-id").live("pageinit", function(){
 console.log(“The page has been enhanced...”);
 // Attach event handlers or run other jQuery code...
});

Page Transition Events
Page transition events get triggered on the “from” and “to” pages during a page
transition. You may bind to these events to observe when pages are being shown or
removed from view.

 pagebeforehide

Triggered on the “from” page as the transition begins. This event occurs before
the pagebeforeshow event. This event will only fire if the page change request
has an associated “from” page. Callbacks for this event are passed two
arguments. The first is the event and the second argument is a data object. The
data object, passed as the second argument, contains the following properties:

 nextPage (object). A jQuery collection object containing the page
element we are transitioning to.

Example:

$("#from-page-id").live("pagebeforehide", function(e, data){
 console.log("The page transition is just starting...");
});

CHAPTER 8: jQuery Mobile API 188

 pagebeforeshow

Triggered on the “to” page after the page has been enhanced and just before
the page transition begins. Callbacks for this event are passed two arguments.
The first is the event and the second argument is a data object. The data object,
passed as the second argument, contains the following properties:

 prevPage (object). A jQuery collection object containing the page element
we are transitioning from.

Example:

$("#to-page-id").live("pagebeforeshow", function(e, data){
 console.log("The page transition is just starting...");
});

 pagehide

Triggered on the “from” page after the transition is complete and before the
pageshow event. This event will only fire if the page change request has an
associated “from” page. Callbacks for this event are passed two arguments. The
first is the event and the second argument is a data object. The data object,
passed as the second argument, contains the following properties:

 nextPage (object). A jQuery collection object containing the page element
we are transitioning to.

Example:

$("#from-page-id").live("pagehide", function(e, data){
 console.log("The page transition is complete!");
});

 pageshow

Triggered on the “to” page after the transition is complete and after the “from”
page is hidden. Callbacks for this event are passed two arguments. The first is
the event and the second argument is a data object. The data object, passed as
the second argument, contains the following properties:

 prevPage (object). A jQuery collection object containing the page element we
are transitioning from.

Example:

$("#to-page-id").live("pageshow", function(e, data){
 console.log("The page transition is complete!");
});

CHAPTER 8: jQuery Mobile API 189

TIP: The jQuery Mobile team has created a helpful bookmarklet that allows you to view the page
event history from your browser console (see Figure 8-2). As you navigate your jQuery Mobile
application you will be able to view the history of events by page, URL, and timestamp. To install, go

to the jQuery Mobile event logger page4 and follow their instructions for installing the bookmark.

Figure 8-2. Page event logger console

Trigger Events
Triggering jQuery Mobile page events can be helpful when building dynamic pages. For
instance, if you add several new components to a page you can call the create event to
enhance all new widgets on the page at once.

 trigger(“create”)

We can trigger this event to automatically enhance all new elements
on a page. This event is triggered on the page container.

Example:

// Add two new buttons to the page
$('<button id="b2">Button2</button>').insertAfter("#b1");
$('<button id="b3">Button3</button>').insertAfter("#b2");

// Enhance the new buttons on the page
$.mobile.pageContainer.trigger("create");

4 See http://jquerymobile.com/test/tools/log-page-events.html.

http://jquerymobile.com/test/tools/log-page-events.html

CHAPTER 8: jQuery Mobile API 190

Properties
jQuery Mobile also exposes a set of properties that are publicly available so you do not
have to write your own jQuery selectors to access common components.

 $.mobile.activePage

Gets the page or dialog element that is the currently active or visible. The active
page is assigned the CSS class as specified by $.mobile.activePageClass.

 $.mobile.firstPage

This is the first page defined within the page container
($.mobile.pageContainer). For instance, the $.mobile.firstPage will be shown
when no location.hash value exists or when $.mobile.hashListeningEnabled
has been disabled. For example, in a multi-page document the
$.mobile.firstPage is initially shown by default.

 $.mobile.pageContainer

The HTML container where all pages live. Within jQuery Mobile, the body
element is the container that contains all pages. All Ajax-loaded pages and all
internal pages of a multi-page document will exist within the page container.

Data Attributes
jQuery Mobile’s data attributes provide the ability to enhance and configure your mobile
application with simple HTML markup. The complete list of all data attributes, in
alphabetical order with descriptions and examples are listed below (see Table 8-1).

Table 8–1. jQuery Mobile Data Attribute Reference

Attribute Description Example

data-ajax This attributed can be attached to
links, buttons, or forms. When set to
false, it will force a page reload
(bypassing Ajax and transitions). For
example, this attribute is required on
any link that opens a multi-page
document from a page that was
opened via Ajax. Ajax navigation is
enabled by default.

<a href="multi-page.html" data-
role="button" data-ajax="false">
multi-page

data-add-back-btn
This attributed is attached to a page
container. When set to true, a back
button will automatically appear in
the page header. A page must exist
in browser history for the back
button to appear. The back button is
disabled by default.

<div data-role="page" data-add-
back-btn="true">

CHAPTER 8: jQuery Mobile API 191

Attribute Description Example

data-back-btn-text This attribute is attached to the page
container. The default back button
text is “Back”. You can override this
text by updating the value of this
attribute.

<div data-role="page" data-add-
back-btn="true" data-back-btn-
text="Previous">

data-collapsed You can configure a collapsible
container to be collapsed (data-
collapsed=”true”) or expanded
(data-collapsed="false") by adding
this attribute. A collapsible section
will be shown expanded by default
(see Listing 6-10).

<div data-role="collapsible"
data-collapsed="true">

 <h3>Wireless</h3>

</div>

data-corners This attribute can be attached to
links or buttons. When false, the
framework will remove rounded
corners from the button. Buttons
will have rounded corners by default.
For instance, the “disagree” button
shown on the right has its rounded
corners removed.

<a href="" data-role="button"
data-
corners="false">Disagree

data-count-theme This attribute sets an alternate theme
for your badge or count bubble (see
Listing 5-9).

<ul data-role="listview" data-
count-theme="e">

data-direction This attributed is attached to links,
buttons, or forms. When set to
reverse it will apply a reverse
transition. For example, a forward
“slide” transition will slide left. A
reverse “slide” transition will slide
right. A reverse transition is applied
by default when transitioning back in
history.

<a href="" data-icon="home"
data-iconpos="notext" data-
direction="reverse" class="ui-
btn-right">Home

CHAPTER 8: jQuery Mobile API 192

Attribute Description Example

data-divider-theme Sets the theme of the list divider (see
Listing 5-3).

<li data-role="list-divider" data-
divider-theme=”a”>

data-dom-cache This attribute allows you to cache
pages within the DOM. By default,
this attribute is set to false and as a
result, the framework will only keep
the “from” and “to” pages in the
DOM actively cached. It is
recommended to leave this value
unchanged so the DOM remains
lightweight.

<div data-role="page" data-
dom-cache="true">

data-filter This attribute is attached to lists and
adds a search bar above the list of
results when the value is set to true
(see Listing 5-10).

<ul data-role="listview" data-
filter="true">

data-filter-
placeholder

Sets the placeholder (hint) text for
the search filter. The default
placeholder text is “Filter items...”
(see Listing 5-10).

<ul data-role="listview" data-
filter="true" data-filter-
placeholder="Search...">

data-filter-theme Sets the theme for the search filter.

<ul data-role="listview" data-
filter="true" data-filter-
theme="e">

data-fullscreen This attribute is attached to a page
container. The content section will
appear in full-screen mode when set
to true. Typically, you will want this
behavior for viewing photos and
videos (see Listing 3-1).

<div data-role="page" data-
fullscreen="true">

CHAPTER 8: jQuery Mobile API 193

Attribute Description Example

data-icon This attribute is attached to links and
buttons. For example, setting the
value to home shows the home icon
from the jQuery Mobile icon pallet.
For the complete listing of values
refer to Table 4-1.

<a href="../../" data-icon="home"
data-iconpos="notext" data-
direction="reverse" class="ui-btn-
right jqm-home">Home

data-iconpos This attribute can be attached to
links or buttons. This attribute will
position the icon. It can be set to
“top”, “bottom”, “left”, “right” or
“notext” (see Listing 4-6). “notext”,
will remove the icon's default text for
an icon-only button. By default,
icons are left aligned.

<a href="" data-icon="home"
data-iconpos="notext" data-
direction="reverse" class="ui-btn-
right">Home

data-iconshadow This attribute can be used in
conjunction with the data-icon
attribute. When false, the framework
will remove the drop shadow from
the button's icon. Drop shadows will
show by default. For example, the
plus icon shown on the right has its
shadow removed.

<a href="#" data-role="button"
data-iconshadow="false" data-
icon="plus" data-
iconpos="notext">Plus

data-id This attribute is attached to the
footer and is commonly used with
tab bars. Add this attribute to the
footer of the active and target page
to make the footer stay in place
between transitions. The value of
this attribute must be the same
across pages for the footer to stay in
place, and the header and footer
toolbars must be set to data-
position="fixed". Otherwise they
will not be in view during the
transition.

<div data-role="footer" data-
id="myFooter" data-
position="fixed">

CHAPTER 8: jQuery Mobile API 194

Attribute Description Example

data-inline This attribute is attached to links or
buttons. By default, all buttons in the
body content are styled as block-
level elements and fill the width of
the screen. If you want a more
compact button that is only as wide
as its text and icons set this value to
true. An inline block is placed inline
(i.e., on the same line as adjacent
content), but it behaves as a block.
Adding data-inline to a button will
position them side-by-side (see
Listing 4-1).

<a href="#agree" data-
role="button" data-
inline="true">

data-inset=
"true" This attribute is attached to lists.

When set to true it will style the list
items so they do not appear edge-
to-edge and instead they will appear
with rounded corners. Insets help to
visually segregate different groups of
lists (see Listing 5-2). <ul data-role="listview" data-

inset="true">

data-native-menu Select menu's will launch the native
select picker for the OS by default.
To render the select menu in a
custom HTML/CSS view, set this
value to false.(see Listing 4-17).

data-native-menu="true"

data-native-menu="false"
<select name="genre" data-
native-menu="false">

CHAPTER 8: jQuery Mobile API 195

Attribute Description Example

data-placeholder A placeholder can be used to display
hint text for an unselected select
menu and it requires users to make a
selection (see “Placeholder
Options”, Chapter 4).

<option value="" data-
placeholder="true">Select
one...</option>

data-position This attribute is attached to headers
or footers. When set to fixed it will
position the header and footer at the
top and bottom of the page.

<div data-role="header" data-
position="fixed">

<div data-role="footer" data-
position="fixed">

data-prefetch When this attribute is added to a link or
button the framework will lazy load the
page into the DOM in the background.
It is recommended to build individual
pages (single-page template) and use
the data-prefetch attribute to preload
secondary pages that will be commonly
accessed. This strategy is simpler and
more performant compared to the
multi-page strategy.

<a href="reviews.html" data-
prefetch>Movie Reviews

data-rel="back" This attribute is attached to links or
buttons. When set to “back” the link
will mimic the back button, going
back one history entry
(window.history.back()) and
ignoring the links default href. For C-
Grade browsers (no JavaScript
support) the data-rel will be ignored
and the href attribute will be used as
a fallback (see Listing 2-7).

<a href="home.html" data-
role="button" data-
rel="back">Disagree

data-rel=
"dialog"

This attribute is attached to links or
buttons. You can set this value to
dialog to indicate you want the
target page to be styled as a modal
dialog (see Listing 2-5).

<a href="dialog.html" data-
role="button" data-rel="dialog"
data-transition="slideup">Show
Dialog

CHAPTER 8: jQuery Mobile API 196

Attribute Description Example

data-role=
"button"

This attribute is attached to links.
Setting the value to button styles a
link as a button.

<a href="#movies" data-
role="button">Show Movies

data-role=
"collapsible"

To create a content block that can
expand and collapse, wrap it with an
element that contains this attribute
(see Listing 6-10).

<div data-role="collapsible">
 <h3>Wireless</h3>
</div>

data-role=
"collapsible-set"

Collapsible sets are similar to
collapsible blocks except their
collapsible sections are visually
grouped together and only one
section may be expanded at a time
which gives the collapsible set an
appearance of an accordion (see
Listing 6-11).

<div data-role="collapsible-
set">
 <div data-role="collapsible">
 <h3>Wireless</h3>
 </div>
</div>

data-role=
"content"

This attribute is attached to the div
element that will contain the content
body. This element is optional (see
Listing 2-1).

<div data-role="content">

data-role=
"controlgroup"

If you want to group your buttons
together, you can wrap your buttons
within a control group (see Listing 4-8).

<div data-role="controlgroup"
data-type="horizontal">
<a href="#" data-role="button"
class="ui-control-active">In
Theatres
<a href="#" data-role="button"
class="ui-control-
inactive">Coming Soon
</div>

CHAPTER 8: jQuery Mobile API 197

Attribute Description Example

data-role="dialog" This attribute is attached to the page
container. You may apply this
attribute as an alternate to data-
role="page". Setting the value to
dialog will show the page styled as
a modal dialog.

<div data-role="dialog">

data-role=
"fieldcontain" This attribute is attached to div

elements that wrap form fields.
When set to fieldcontain this
attribute adds form row separators
around the wrapped fields.

<div data-role="fieldcontain">
<label><input> </div>

data-role=
"footer"

This attribute creates the footer
container. The footer is optional (see
Listing 2-1).

<div data-role="footer">

data-role=
"header"

This attribute creates the header
container. The header is optional
(see Listing 2-1).

<div data-role="header">

data-role=
"list-divider"

This attribute is added to lists to
create header segments (see
Listing 5-3).

<li data-role="list-
divider">Mon

data-role=
"listview"

This attribute is used to create list
views (see Listing 5-1).

<ul data-role="listview">Action

CHAPTER 8: jQuery Mobile API 198

Attribute Description Example

data-role=
"navbar"

This attribute creates a navigation or
tab bar. A navigation bar can be
attached to headers or footers (see
Listing 3-8).

<div data-role="navbar">
...</div>

data-role=
"none"

Adding this attribute to any form or
button element tells the framework
not to apply any enhanced styles or
scripting.

<input type="text" name="name"
id="name" value="" data-
role="none" />

data-role=
"page"

This attribute defines the page
container (see Listing 2-1).

<div data-role="page">
 <!-- header -->
 <!-- content -->
 <!-- footer -->
</div>

data-role=
"slider"

This attribute is used to create a
switch control (see Listing 4-25).

<select name="slider" data-
role="slider">
 <option
value="off">Off</option>
 <option
value="on">On</option>
</select>

data-shadow When false, the framework will
remove the drop shadow from the
button. Drop shadows will show by
default. The “disagree” button
shown on the right has its shadow
removed.

<a href="" data-role="button"
data-
shadow="false">Disagree

data-split-icon Sets the icon for the secondary
button when building a split button
list (see Listing 5-6).

<ul data-role="listview" data-
split-icon="star">

CHAPTER 8: jQuery Mobile API 199

Attribute Description Example

data-split-theme Sets the theme for the secondary
button when building a split button
list (see Listing 5-6).

<ul data-role="listview" data-split-
icon="delete" data-split-
theme="v">

data-theme This attribute can be added to all
containers and page components to
create themable designs. For the
complete list of available themes
refer to Chapter 7.

<div data-role="header" data-
theme="b">

data-title This attribute is attached to the page
container and sets the title for a
page. (see “Setting the Page Title of
an Internal Page”, Chapter 2).

<div data-role="page" data-
title="Welcome">

data-transition This attribute can be attached to
links, buttons, and forms. The value
of this attribute sets the CSS-based
transition effect to use when
transitioning between pages. Refer
to Table 2-1 for the complete list of
available transitions.

<a href="flip.html" data-
transition="flip">Flip

data-type=
"horizontal"

Buttons are positioned vertically by
default, we can style them horizontally
with the addition of the data-
type=”horizontal” attribute (see
Listing 4-8).

<div data-role="controlgroup"
data-type="horizontal">

<a href="#" data-role="button"
class="ui-control-active">In
Theatres

<a href="#" data-role="button"
class="ui-control-
inactive">Coming Soon

</div>

CHAPTER 8: jQuery Mobile API 200

Attribute Description Example

data-url This attribute is attached to the page
container. The value of this attribute is
the pages unique locator and will be
shown in the browsers URL bar. By
default, jQuery Mobile will assign the
unique locator based on the page’s
URL. However, if you want to change
the URL you can set your desired URL
as the value of the data-url attribute. For
instance, you may want to override the
URL after a redirect. Or if you wanted to
hide the filename and only show the
URL path you could update the data-url
attribute to exclude the filename.

<div data-role="page" data-
url="/override/url/path/or/filenam
e.html">

Summary
In this chapter, we saw how to configure jQuery Mobile and reviewed many of the
common API features that are available for building more dynamic pages. Whether you
need to globally change the default transition or want to show the back button on all
pages, jQuery Mobile allows us to reconfigure many common settings. We also reviewed
many popular methods, events, and properties that jQuery Mobile has exposed publicly.
These API features are useful when you need to programmatically update your Mobile
Web application. Lastly, we saw a complete listing of all jQuery Mobile data attributes.
Hopefully, this can listing can provide a quick reference for when you are working on
your fast-paced jQuery Mobile projects. Each attribute included a brief description,
example, and figure.

In our next chapter, we are going to take an in-depth look at working effectively with
services. We will see how to integrate jQuery Mobile pages with client-side and
server-side integration solutions.

201

 Chapter

Service Integration
Strategies
When building Web applications there are two primary access strategies for loading
data. There is the traditional, server-side access strategy and the Web 2.0, client-side
access strategy. In this chapter, we are going to show examples of integrating jQuery
Mobile with both access strategies and we will discuss the advantages of each. jQuery
Mobile integrates very well with both strategies and as a result, you can choose the
appropriate access strategy that best suits your application needs.

To start, we are going to show two client-side integration examples. With the popularity
of social media, our first example will demonstrate how to integrate with Twitter's
RESTful API. RESTful APIs are lightweight web services that are often preferred over
traditional web services because of their simple setup and flexible response types
(JSON, XML). After our Twitter example, we will create our own RESTful API that allows
users to register for free movie prizes. This registration example will help demonstrate
our ability to POST to a RESTful API from a jQuery Mobile application. In addition, this
example will familiarize you with setting up RESTful API's on the server-side.

Then, we will transition into server-side integration strategies and implement one use
case that GET's data and another that POST's data. For comparison purposes, we will
re-implement our client-side registration example as a server-side solution. You may be
surprise to see how much cleaner our page markup becomes when fetching data with a
server-side model-view-controller (MVC) access strategy.

Lastly, with the popularity of Geolocation and map views, we will see how to integrate
jQuery Mobile with the HTML5 Geolocation API and Google Maps.

9

CHAPTER 9: Service Integration Strategies 202

Client-side Integration with RESTful Services
Most social media sites have a public API for accessing their data. Twitter,1 LinkedIn,2
and Facebook3 integrations are very common on the Web and RESTful integrations are
common access strategies for each of them. In this section, we are going to integrate
jQuery Mobile with two different RESTful APIs so we can see how well this strategy runs
within jQuery Mobile.

Client-side Twitter Integration with Ajax
In our first client-side example we are going to integrate jQuery Mobile with Twitter's
RESTful API. Twitter is a very popular social media site which allows users to send out,
or "tweet" brief messages about topics, events, or random opinions. In our movie app, it
may be valuable to allow users to search Twitter in real-time for feedback on a movie
they might be interested in. For instance, in addition to viewing others' reviews of a
particular movie, we may want to provide a convenient link to Twitter that displays the
latest tweets about it. On our user review page, we have added a Twitter button to the
header that users may click to view the latest tweets about the movie (see Figure 9–1
and its related code in Listing 9–1).

1 See http://dev.twitter.com/console.

2 See http://developer.linkedin.com/community/apis.

3 See http://developers.facebook.com/.

http://dev.twitter.com/console
http://developer.linkedin.com/community/apis
http://developers.facebook.com/

CHAPTER 9: Service Integration Strategies 203

Figure 9–1. Twitter button in header of movie review page

Listing 9–1. Twitter button in header of movie review page (ch9/reviews.html)

<div data-role="page" id="reviewsPage">
 <div data-role="header">
 <h1>Reviews</h1>
 <a href="twitter.html" id="twitterBtn" class="ui-btn-right"
 data-icon="custom" data-iconpos="notext">
 </div>
 ...
</div>

When users click the Twitter button, we will search Twitter for the most recent tweets for
the current movie and load the results onto our Twitter results page (see Figure 9–2 and
its related code in Listing 9–2).

CHAPTER 9: Service Integration Strategies 204

Figure 9–2. Twitter results page

Listing 9–2. Twitter results page (ch9/twitter.html)

<div data-role="page" id="twitterPage">
 ...
 <div data-role="content">
 <ul id="tweet-list" data-role="listview" data-inset="true">
 <li data-role="list-divider">Tweets</p>

 </div>

</div>

The tweet-list id shown in Listing 9–2 is our placeholder where we will append our
Twitter search results. Twitter's search API returns many data elements, however, we
are only interested in the tweet text, the user that posted the tweet, and the user's
profile image.

CHAPTER 9: Service Integration Strategies 205

TIP: To view all the data elements that are available from Twitter's search API, launch this string
in your browser “http://search.twitter.com/search.json?q=xmen”. This is the basic
search API where the value of the “q” parameter is our searchable keyword(s). In this case, we

are searching Twitter for any tweets with the keyword “xmen” in them.

TIP: Most browsers show JSON responses in an unformatted style that can be very unfriendly:

As an alternative, Firefox has a JSON Viewer plug-in4 that formats JSON responses in a more
structured format:

Also, if you need to validate JSON, JSONLint5 can be a helpful tool.

jQuery Mobile has Ajax support built-in and this makes RESTful integrations simpler with
no dependencies on third party JavaScript frameworks. This support comes from the
jQuery API6 that jQuery Mobile extends. In jQuery, the $.ajax7 API is the preferred

4 See https://addons.mozilla.org/en-US/firefox/addon/jsonview/.
5 See http://jsonlint.com/.

6 See http://jquery.com/.

7 See http://api.jquery.com/jQuery.ajax/.

http://search.twitter.com/search.json?q=xmen%E2%80%9D
https://addons.mozilla.org/en-US/firefox/addon/jsonview/
http://jsonlint.com/
http://jquery.com/
http://api.jquery.com/jQuery.ajax/

CHAPTER 9: Service Integration Strategies 206

solution for RESTful integrations because of its simplicity and its flexible configuration
options (timeout, caching, etc.).

To integrate jQuery Mobile with Twitter's RESTful API, the following steps are necessary
(see Listing 9–3):

1. When the Twitter button is clicked, we will initially display the jQuery Mobile

activity indicator so the user is visually aware that an activity is being processed in

the background:

$("#twitterBtn").bind("click", function(e) {
 $.mobile.showPageLoadingMsg();

2. Next, we will load our Twitter results page into the DOM of the current page. If the

page already exists in the DOM we will reload and update the cached page:

$.mobile.loadPage("twitter.html", { reloadPage: true });

3. Before our Twitter page is enhanced, we will send an AJAX request to the Twitter

API to gather our search results:

$(“#twitterPage”).live("pagebeforecreate", function(){
 $.ajax({...

4. Our url option is configured to Twitter's RESTful API and our search query is

configured to find all tweets containing the keyword “xmen”:

url: "http://search.twitter.com/search.json?q=xmen"

5. Since the Twitter API exists on another domain, we are required to set our

dataType option to jsonp. Normally, cross-domain communication is not allowed

on the Web but JSONP8 helps facilitate a trusted means of integration across

domains:

dataType: "jsonp"

6. Lastly, we implement our success callback to iterate the search results, create a

list item for each row, and append the new markup to our list container:

success: function(response) {...

Listing 9–3. Client-side Twitter integration (ch9/twitter.js)

$("#reviewsPage").live("pageinit", function(){
 $("#twitterBtn").bind("click", function(e) {
 $.mobile.showPageLoadingMsg();

 // Reload Twitter results page even if it's already in the DOM
 $.mobile.loadPage("twitter.html", { reloadPage: true });

 // Prevent default click behavior
 return false;

8 See http://en.wikipedia.org/wiki/JSONP.

http://search.twitter.com/search.json?q=xmen
http://en.wikipedia.org/wiki/JSONP

CHAPTER 9: Service Integration Strategies 207

 });
});

$(#twitterPage").live("pagebeforecreate", function(){
 $.ajax({
 url: "http://search.twitter.com/search.json?q=xmen",
 dataType: "jsonp",
 success: function(response) {
 // Generate a list item for each tweet
 var markup = "";
 $.each(response.results, function(index, result) {
 var $template = $('<div>
<p class="from"></p><p class="tweet"></p></div>');
 $template.find(".from").append(result.from_user);
 $template.find(".tweet").append(result.text);
 $template.find(".profile")
 .attr("src", result.profile_image_url);
 markup += $template.html();
 });

 // Append the Tweet items into our Tweet list and refresh the
 // entire list.
 $("#tweet-list").append(markup).listview("refresh", true);

 // Transition to the Twitter results page.
 $.mobile.changePage($("#twitterPage"));
 },
 });
});
In this example, we have chosen to load the Twitter results on demand when the user
clicks on the Twitter button. Alternatively, you may pre-fetch the Twitter data so users
can see the Twitter results instantly when the button is clicked. To set up this
strategy, add the data-prefetch attribute on the Twitter button:
<a href="twitter.html" id="twitterBtn" class="ui-btn-right" data-icon="custom" data-
iconpos="notext" data-prefetch>

Now the page change can be handled by the button's default click behavior allowing us
to remove our custom click handler for this button and the $.mobile.changePage() call
after the Twitter results are appended to the list.

Also, in a production use case, you will want to configure the timeout and error
callback on the $.ajax method to handle any unresponsive or unavailable API's. For
instance, if the Twitter API is unresponsive it may be helpful to notify the user:

timeout: 6000, // Timeout after 6 seconds
error: function(jqXHR, textStatus, errorThrown) {
 $.mobile.hidePageLoadingMsg();

 // Show error message
 $("<div class='ui-loader ui-overlay-shadow ui-body-e
 ui-corner-all'><h1>"+ $.mobile.pageLoadErrorMessage +"</h1></div>")
 .css({ "display": "block", "opacity": 0.96, "top": 100 })
 .appendTo($.mobile.pageContainer)
 .delay(800)
 .fadeOut(1000, function() {
 $(this).remove();

http://search.twitter.com/search.json?q=xmen

CHAPTER 9: Service Integration Strategies 208

 });
}

Client-side Form POST with Ajax
The previous example was a use case that sent a GET request to Twitter's API. GET
requests are very common when reading from an API and the $.ajax method will default
to this type when none is specified. In our next example, we will create our own RESTful
API that allows our users to send POST requests. Let's create an API so users can
register for prizes. Our user interface will consist of a simple form that only requires an
email address (see Figure 9–3 and its related code in Listing 9–4).

Figure 9–3. Registration form for client-side POST with Ajax

Listing 9–4. Registration form for client-side POST with Ajax (ch9/register-client.html)

<div data-role="page" id="registrationPage" data-theme="d">
 <div data-role="header">
 <h1>Registration</h1>
 </div>

CHAPTER 9: Service Integration Strategies 209

 <div data-role="content">
 <form id="register" method="post">
 <label for="email">Email:</label>
 <input type="email" name="email" id="email" placeholder="Email"
required />
 <input type="submit" id="submit" value="Register" />
 </form>
 </div>
</div>

TIP: The input field for the email address includes three newer HTML5 attributes. The
type=”email” field provides two benefits. First, when the field receives focus it will prompt
the QWERTY keyboard with several useful email keys (see Figure 9–3). Secondly, it will also
verify that the field contains a valid email address when the form is submitted. For instance, in

the newer desktop browsers, if a user enters an invalid email they will be prompted with the
following message:

Additionally, the required attribute will assert the email field is not empty when the user
submits. If it is empty, the user will get this warning:

Lastly, the placeholder attribute will add hint text to the input field. While these features are
helpful, not all of them are supported in today's browsers. Peter-Paul Koch has a useful site9 that

shows all available input attributes with their associated browser support.

To handle the form submission on the client-side we will attach an event listener on the
submit button. To submit a POST request to our RESTful API, the following steps are
necessary (see Listing 9–5):

9 See http://www.quirksmode.org/html5/inputs_mobile.html and
http://www.quirksmode.org/html5/inputs.html

http://www.quirksmode.org/html5/inputs_mobile.html
http://www.quirksmode.org/html5/inputs.html

CHAPTER 9: Service Integration Strategies 210

1. First, we need to intercept and override the default submit behavior. Now we are

ready to submit the form through our RESTful API:

$("form").submit(function () {

2. Secondly, we need to display the jQuery Mobile activity indicator so the user is

visually aware that an activity is being processed in the background:

$.mobile.showPageLoadingMsg()

3. Next, we set up our $.ajax request with all required options:

 Our url option is configured to our new RESTful resource that
was set up locally to handle the client-side registration:

url: "http://localhost:8080/jqm-webapp/rest/register"

We will look at the RESTful implementation in a moment.

 Next, we set the type option to POST. POST is the recommend
type when creating new entities and it is slightly more secure
than GET because it does not expose the data attributes as
query string parameters on the URL:

type: "POST"

 Again we set the dataType option to jsonp because our RESTful
API is also running on a separate domain from our client:

dataType: "jsonp"

 The jsonp option defines the callback function that will handle
the response:

jsonp: "jsoncallback"

Any RESTful resource that handles jsonp requests must produce
a JavaScript response. The response is actually JSON data
wrapped within a JavaScript function. For instance, the response
of our RESTful API will include the email address that was
successfully registered, wrapped in a callback function. The
name of this callback function needs to be set as the value of our
jsonp option:

jsoncallback({"email":"BradPitt@gmail.com"})

 The data option contains the data we want to send to our
RESTful resource. In this case, we will send all form values and
URL-encode them with jQuery's serialize method:

data: $("form#register").serialize(),

mailto:BradPitt@gmail.com

CHAPTER 9: Service Integration Strategies 211

 The last option is our success handler. This will get processed
after we receive a successful response from the RESTful API. In
our case, we forward the user to a thank you page and also pass
the successfully registered email address as a data parameter for
confirmation:

success: function(response) {$.mobile.changePage(“register-
thanks.html”, {
 data: {"email": response.email}});

 }

Listing 9–5. Client-side POST with Ajax (ch9/register.js)

$(“#registrationPage”).live("pageinit", function(){
 $("form").submit(function () {
 $.mobile.showPageLoadingMsg();

 $.ajax({
 url: "http://localhost:8080/jqm-webapp/rest/register",
 type: "POST",
 dataType: "jsonp",
 jsonp: "jsoncallback",
 data: $("form#register").serialize(),
 success: function(response) {
 $.mobile.changePage(“register-thanks.html”,
 { data: {"email": response.email}});
 }

 return false; // Prevent a form submit
 });
});

After a successful registration, users will be forwarded to a thank you page where we
show them what they have won along with the email address where the prize was sent
(see Figure 9–4 and its related code in Listing 9–6).

CHAPTER 9: Service Integration Strategies 212

Figure 9–4. Thank you page after client-side POST with Ajax

Listing 9–6. Thank you page after client-side POST with Ajax (ch9/register-thanks.html)

<div data-role="page" id="thanksPage" data-theme="d">
 <div data-role="header">
 <a href="/ch9/register-client.html" data-icon="home" data-iconpos="notext" data-
direction="reverse">
 <h1>Thanks</h1>
 </div>

 <div data-role="content" class=”thanks”>
 <p>Thanks for registering. One FREE movie pass was just sent to: <span
class="email"></p>

 </div>

</div>

CHAPTER 9: Service Integration Strategies 213

TIP: When designing a navigation strategy for your site it is important to always provide the user some
navigational option to avoid dead ends. In jQuery Mobile, a simple solution is to always show the home
icon in the header bar and have it redirect back to the home page with a reverse transition:

<a href="home.html" data-icon="home" data-iconpos="notext" data-

direction="reverse">

When we executed our changePage call we also passed the email address as a data
attribute to the thank you page. That data attribute gets appended to the page's data-
url attribute:

data-url="/ch9/register-thanks.html?email=BradPitt%40gmail.com"

Before the thank you page is enhanced, we fetch that email address and bind it into the
email placeholder on our thank you page (see Listing 9–7).

Listing 9–7. Append email onto thank you page (ch9/register.js)

$("#thanksPage").live("pagebeforecreate", function(){
 var email = getParameterByName("email", $(this).jqmData("url"));
 $(".email").append(email);
});

function getParameterByName(param, url) {
 var match = RegExp('[?&]' + param + '=([^&]*)').exec(url);
 return match && decodeURIComponent(match[1].replace(/\+/g, ' '));
}

The RESTful implementation on the server-side to handle the registration was
implemented with Jersey10 and deployed on Tomcat11 (see Listing 9–8).

Listing 9–8. RESTful resource to handle registration (com.bmb.jqm.resource.RegisterResourse.java)

@Path("/register")
public class RegisterResource {

 @Produces("application/x-javascript")
 public Response register(@QueryParam("jsoncallback")

@DefaultValue("jsoncallback") String callback,
@QueryParam("email") String email) {

 Registration registration = new Registration();
 registration.setEmail(email);
 // Save registration...

 // Return registration in response as jsonp
 return Response.status(Response.Status.OK).entity(new
 JSONWithPadding(registration, callback)).build();
 }
}

10 See http://jersey.java.net/.

11 See http://tomcat.apache.org/.

http://jersey.java.net/
http://tomcat.apache.org/

CHAPTER 9: Service Integration Strategies 214

Let's review Jersey's annotations as we step through the resource:

 The @Path annotation defines the path the resource is responsible for
handling. In this case, the RegisterResource object will handle all
requests sent to “*/rest/register”. Jersey is configured in web.xml and
there are two configuration items that require setup (see Listing 9–9).
First, we need to define the package(s) where all Resources are
deployed, and secondly we need to define what URL patterns should
be dispatched through the Jersey container. We have defined that all
RESTful resources are declared in package “com.bmb.jqm.resource”
and we will route all URL paths with “/rest/*” through the Jersey
container.

 The @Produces annotation defines the MIME type of our response. We
have chosen to expose our RESTful API publicly across domains
which requires the resource to return a JavaScript response. This
allows clients to access the API with jsonp requests.

 The register method accepts two input parameters. The first is the
callback function name. The client may send the name of the callback
function but it is not required. The server will default the callback name
to “jsoncallback” if none is supplied. The last parameter is the email
address of the user that is registering.

 The server can now process the registration and generate a response.
In this example, we will return a response that contains the
Registration object converted to JSON and wrapped within the
callback function:

jsoncallback({"email":"BradPitt@gmail.com"})

Listing 9–9. Jersey configuration (web.xml)

<servlet>
 <servlet-name>Jersey REST Service</servlet-name>
 <servlet-class>
 com.sun.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
 <init-param>
 <param-name>com.sun.jersey.config.property.packages</param-name>
 <param-value>com.bmb.jqm.resource</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Jersey REST Service</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>

As we have seen, jQuery Mobile integrates very well with RESTful API's. Whether we
need to read or submit data, the built-in jQuery library provides all the convenient
functions for managing the RESTful lifecycle on the client-side.

mailto:BradPitt@gmail.com

CHAPTER 9: Service Integration Strategies 215

Server-side Integration with MVC
In this section, we are going to focus our attention on server-side access strategies. On
the Web, a very common strategy is integrating with a model-view-controller (MVC)
framework. We will see two MVC examples that will be very similar in style to our client-
side examples. In our first example, we will convert our client-side registration use case
into a server-side implementation. This example, will provide an apples to apples
comparison of how identical use cases can be implemented in jQuery Mobile with client-
side versus server-side access strategies. In our final example, we will see how to
implement a use case that GET's data from the server.

Server-side Form POST with MVC
For comparison purposes, it will be valuable to see a server-side implementation of our
registration use case. Again, we will have a registration form that allows users to opt-in
to receive discounted or free movie tickets (see Figure 9–5).

Figure 9–5. Registration form for server-side POST with MVC

CHAPTER 9: Service Integration Strategies 216

The page markup for our registration page is very similar to the one shown in our client-
side example except we are not going to override the form submission process. In our
server-side registration example, when the user clicks the Register button, we will let the
form submit its request to our action (see Listing 9–10).

Listing 9–10. Registration form for server-side integration (/webapp/ch9/register-server.html)

<div data-role="page" id="registrationPage" data-theme="d">
 <div data-role="header">
 <h1>Register</h1>
 </div>

 <div data-role="content">
 <form id="register" action="/jqm-webapp/mvc/register" method="post">
 <label for="email">Email:</label>
 <input type="email" name="email" id="email" placeholder="Email"
 required />

 <input type="submit" value="Register" data-theme="b"/>
 </form>
 </div>
</div>

Does anything standout when comparing the registration page from our client-side
example (register-client.html) versus this one (register-server.html)? The most notable
difference is this page requires no custom JavaScript. As a result, our page markup is
much cleaner.

When the form is submitted, a POST request will be sent to the path defined in our
action (/jqm-webapp/mvc/register). This request will be handled on the server-side by a
Spring MVC12 controller that is deployed on Tomcat. In our web.xml file, we configured
our servlet-mapping so all “/mvc/*” URL's get routed through Spring MVC's dispatcher
servlet (see Listing 9–11).

Listing 9–11. Spring MVC servlet-mapping configuration (/WEB-INF/web.xml)

<servlet>
 <servlet-name>jqm-webapp</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>jqm-webapp</servlet-name>
 <url-pattern>/mvc/*</url-pattern>
</servlet-mapping>

From a user interface perspective, the workflow is identical to our client-side registration
example. The form is submitted, processed, and then our thank you page is shown. The

12 See http://static.springsource.org/spring/docs/current/spring-framework-
reference/html/mvc.html.

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/mvc.html

CHAPTER 9: Service Integration Strategies 217

controller code that processes and redirects the request to the thank you page is shown
in Listing 9–12.

Listing 9–12. Spring MVC registration controller (com.bmb.jqm.controller.RegisterController.java)

@Controller()
public class RegisterController {

 @RequestMapping(method = RequestMethod.POST)
 public String enroll(@RequestParam("email") String email, HttpSession
 session) {
 // Save registration...

 session.setAttribute("email", email);
 return "redirect:/mvc/register/thanks";
 }

 @RequestMapping(method = RequestMethod.GET)
 public String thanks() {
 return "register-thanks";
 }
}

Let's review the Spring MVC annotations as we step through the controller:

 The @Controller annotation defines the class as a controller that can
handle requests. Spring MVC was configured with path to class name
mapping. For instance, all “/register/” requests will be dispatched to
the RegisterController. This configuration was setup in Spring MVC's
dispatcher servlet (see Listing 9–13).

 The @RequestMapping annotation defines the methods that will handle
the POST and GET requests. When the form is submitted, a POST
request will be sent to the enroll method. The thanks method will
handle all GET requests. For instance, we redirect to the thank you
page after the form is processed and the thanks method will get
triggered when the thank you page is refreshed.

 The @RequestParam annotation will bind the email address that was
submitted on the form to our email input parameter. When the enroll
method is called, we save the registration, put the email address in
session, and redirect to the thank you page (/jsp/register-
thanks.jsp).

Listing 9–13. Spring MVC path to controller mapping configuration (/WEB-INF/jqm-webapp-servlet.xml)

<!-- Enable controller mapping by convention. For example: /foo/* will map to
FooController() -->
<bean
class="org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping" />

The appearance of the thank you page will look identical to our client-side example (see
Figure 9–6).

CHAPTER 9: Service Integration Strategies 218

Figure 9–6. Thank you page after server-side POST with MVC

The only difference is in how the pages are generated. This page is generated on the
server-side as a JSP and the email address is bound with JSTL expression syntax (see
Listing 9–14). With no JavaScript necessary to dynamically generate the page this
markup is cleaner compared to the dynamically generated thank you page we saw in the
client-side example.

Listing 9–14. Thank you page after server-side registration (/jsp/register-thanks.jsp)

<div data-role="page" id="thanksPage" data-theme="d">
 <div data-role="header">
 <h1>Thank You</h1>
 </div>

 <div data-role="content" class="thanks">
 <p>Thanks for registering. One FREE movie pass was just sent to:
 ${email}</p>

 </div>
</div>

CHAPTER 9: Service Integration Strategies 219

One important consideration to be aware of after submitting forms is that jQuery Mobile
manages the URL that appears in the browser's location bar. For instance, after the
server redirects to “/mvc/register/thanks” the browser URL still shows the path of our
action (“/jqm-webapp/mvc/register”). If you have not implemented a GET request
handler for this path, a “refresh” on the thank you page will result in a 404, not found
error. You have two options for handling this:

 The simplest solution is to implement a GET request handler on your
controller for the action path. Our RegisterController#thanks method
handles GET requests and will simply refresh the thank you page and
redisplay the email address stored in session (see Listing 9–12). Also,
when submitting forms on the Web it is recommended to POST and
then redirect to avoid any double-submit issues.

 Alternatively, you may manually set the data-url attribute on the page
container. The value of the data-url attribute will be shown in the
browser's location bar. This also gives developers more flexibility
when constructing semantic paths:

data-url="/manually/set/url/path/”

This strategy can also be used to hide file names. For instance, if you forward to
“/my/movies/index.html”, you may update the data-url attribute of the page to
”/my/movies/”, which will hide the index.html part from displaying.

Server-side Data Access with MVC
In our prior example we saw how to POST form data to the server. In this example, we
will use a GET request to fetch data from the server. This example will retrieve a listing of
movies from the server and display the results within a jQuery Mobile JSP page (see
Figure 9–7).

CHAPTER 9: Service Integration Strategies 220

Figure 9–7. Movies fetched from server-side MVC access

On the server-side, we have a Spring MVC controller setup to handle GET requests on
the following href:

Movies

When the button is clicked, a GET request will be triggered and sent to our
MoviesController. The MoviesController will retrieve our movie data and forward the
response to the movies JSP page (see Listing 9–15).

Listing 9–15. MVC Controller to GET movie data (com.bmb.jqm.MoviesController.java)

@Controller()
public class MoviesController {

 @RequestMapping(method = RequestMethod.GET)
 public String getMovies(ModelMap model) {
 model.addAttribute("movies", getMovieData());
 return "movies";
 }
}

CHAPTER 9: Service Integration Strategies 221

The response will be forwarded to the movies page where the JSP will iterate the list of
movies displaying a separate list item for each result (see Listing 9–16).

Listing 9–16. JSP to display movie data (/jsp/movies.jsp)

<div data-role="content">
 <ul data-role="listview">
 <c:forEach var="movie" items="${movies}">

 <h3>${movie.title}</h3>
 <p>Rated: ${movie.rating}</p>
 <p>Runtime: ${movie.runtime} min.</p>

 </c:forEach>

</div>

One advantage of this server-side solution is the simplicity of the page markup. There is
no dynamic page generation with JavaScript, string concatenation, or dynamic field
binding with jQuery selectors that we saw earlier in our client-side examples.

Server-side versus Client-side
Deciding which service access strategy to implement depends on several factors. If you
are already building Web applications today you may already have an established
pattern for data access on the Web. If so, you may want to continue with this strategy
for consistency purposes. Fortunately, when implemented correctly, jQuery Mobile will
integrate very well with either strategy and ultimately you can collectively choose which
pattern is the best fit for your particular application needs. The following are supporting
considerations for each type of strategy:

Client-side integration:

 Faster response times. Client-side integrations produce faster
response times because they have fewer point-to-point server
dependencies. For instance, we could have aggregated our Twitter
data on the server-side but our response times would have decreased
due to the additional server communication.

CAUTION: While client-side integrations offer quicker response times, use caution when
integrating with third-party API's because it can be advantageous to encapsulate them on the
server-side to better isolate your own pages from third-party modifications. For instance,

Facebook's RESTful API has changed frequently in the past and now it is actually deprecated.

CHAPTER 9: Service Integration Strategies 222

 Faster to implement. Our Twitter example on the client-side was a very
quick implementation because only our client-side markup required
modifications. Implementing this task on the server side would require
client-side and server-side components to be modified.

Server-side integration:

 More reliable. A server-side solution is more reliable than a client-side
solution because you don't have to be concerned with client-side
JavaScript incompatibilities.

 More secure. When implementing client-side solutions you must be
cautious of the API's and type of data that is exposed. If you are
integrating with API's that exposed Personally Identifiable Information
(PII), Personal Health Information (PHI), or Payment Card Industry (PCI)
information a client-side solution would not be advisable.

 Cleaner page markup. We saw examples of this when comparing our
pages that were implemented with server-side versus client-side
access strategies. The pages used in our server-side access examples
had no dependencies on custom JavaScript.

 Simpler unit testing of components. I am a believer in the idea that
server-side unit testing is still simpler than client-side unit testing.
However, after committing several QUnit tests on the jQuery Mobile
project, I am beginning to believe that client-side unit testing can be
very successful and reliable!

Google Maps Integration
In a recent Mobile Web survey, nearly 75% of Web developers use Geolocation, making
it the most popular HTML5 API.13 When building applications that are location aware, it
is common to have a map view displaying points of interest or directions. On the Web,
Geolocation14 in conjunction with Google Maps15 provide a very useful API for building
map functionality. In this section, we are going to see how well jQuery Mobile integrates
with Geolocation and Google Maps. To start we will create an example that plots your
current location on a map (see Figure 9–8).

13 See http://www.webdirections.org/sotmw2011/.

14 See http://dev.w3.org/geo/api/spec-source.html.

15 See http://code.google.com/apis/maps/documentation/javascript/basics.html.

http://www.webdirections.org/sotmw2011/
http://dev.w3.org/geo/api/spec-source.html
http://code.google.com/apis/maps/documentation/javascript/basics.html

CHAPTER 9: Service Integration Strategies 223

Figure 9–8. Google Maps integration with jQuery Mobile

The markup within our page is minimal because we only need to create the content
container for our map (see Listing 9–17).

Listing 9–17. jQuery Mobile page markup for Google Maps integration (ch9/maps.html)

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Google Maps</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" type="text/css" href="jquery.mobile.css" />
 <style>
 #map-page, #map-canvas { width: 100%; height: 100%; padding: 0; }
 </style>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript" src="maps.js"></script>
 <script type="text/javascript" src="jquery.mobile.js"></script>
 <script src="http://maps.google.com/maps/api/jssensor=false"></script>
</head>
<body>

CHAPTER 9: Service Integration Strategies 224

<div data-role="page" id="map-page">
 <div data-role="header">
 <h1>Maps</h1>
 </div>

 <div data-role="content" id="map-canvas">
 <!-- map loads here... -->
 </div>
</div>

</body>
</html>

When integrating with Google Maps, several additions are necessary:

1. First, we need to style our page and map container so it appears fullscreen:

#map-page, #map-canvas { width: 100%; height: 100%; padding: 0; }

2. Next, we import custom JavaScript to help determine the user’s geolocation and

draw our map view. We will look at the details of this file shortly:

<script type="text/javascript" src="maps.js"></script>

3. Then, we import the Google Maps API:

<script src="http://maps.google.com/maps/api/jssensor=false">

4. Lastly, we identify our map container. Our map will be drawn within this element:

<div data-role="content" id="map-canvas">

The custom JavaScript to help determine the user’s geolocation and draw our map view
is shown in Listing 9–18.

Listing 9–18. JavaScript for Google Maps integration (ch9/maps.js)

$("#map-page").live("pageinit", function() {

 // Default to Hollywood, CA when no geolocation support
 var defaultLatLng = new google.maps.LatLng(34.0983425, -118.3267434);

 if (navigator.geolocation) {
 function success(pos) {
 // Location found, show coordinates on map
 drawMap(new google.maps.LatLng(
 pos.coords.latitude, pos.coords.longitude));
 }

 function fail() {
 drawMap(defaultLatLng); // Show default map
 }

 // Find users current position
 navigator.geolocation.getCurrentPosition(success, fail,
 {enableHighAccuracy:true, timeout: 6000, maximumAge: 500000});

http://maps.google.com/maps/api/jssensor=false

CHAPTER 9: Service Integration Strategies 225

 } else {
 drawMap(defaultLatLng); // No geolocation support
 }

 function drawMap(latlng) {
 var myOptions = {
 zoom: 10,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(
 document.getElementById("map-canvas"), myOptions);

 // Add an overlay to the map of current lat/lng
 var marker = new google.maps.Marker({
 position: latlng,
 map: map,
 title: "Greetings!"
 });
 }
});

When the map page is in a “ready” state we will perform the following steps to draw our
map view:

1. First, we determine if the browser supports Geolocation:

if (navigator.geolocation) {

2. If the browser supports Geolocation we will attempt to retrieve the users current

position:

navigator.geolocation.getCurrentPosition(success, fail,

{enableHighAccuracy:true, timeout: 6000, maximumAge: 500000});

The getCurrentPosition API can take up to three parameters. The first parameter

is the success callback. This is the only required parameter. The next parameter is

the error callback and the final parameter is our configurable options. We have

configured our Geolocation lookup to use high accuracy. This will attempt to use

GPS for positioning if supported. We also configured the timeout to 6 seconds. If

we fail to find the users position after 6 seconds our error callback will be invoked.

Lastly, we have configured that the lookup may use a cached position if it is less

than 5 minutes old.

3. When a successful position is found the success callback will be invoked. In this

case, we will draw our map using the position coordinates:

function success(pos) {
 drawMap(new google.maps.LatLng(
 pos.coords.latitude, pos.coords.longitude))
 }

CHAPTER 9: Service Integration Strategies 226

4. Lastly, the drawMap method will draw a Google Map with an overlay icon appearing in

the center of the map at the position that was identified as your location. However, if

Geolocation is not supported or if no position was established, Hollywood, CA will be

shown as the default location (see Listing 9–18).

Summary
In this chapter we saw how to integrate jQuery Mobile with client-side and server-side
data access strategies. jQuery Mobile integrates very well with both strategies allowing
you to choose the access method that is most appropriate for your application needs.
While the client-side strategy offers better performance and can be faster to implement
it may not be as reliable, secure, or as maintainable as a server-side alternative.

Lastly, we saw an example of how to integrate jQuery Mobile with Geolocation and
Google Maps. With these two mapping API's, we now have the ability to add map views
to our jQuery Mobile applications.

In Chapter 10, we will look at how we can take our existing jQuery Mobile applications
and distribute them natively with PhoneGap.

227

 Chapter

Easy Deployment with
PhoneGap
Native apps appear to have two distinct advantages when compared to Mobile Web

applications. First, native apps can be distributed in an app store. The most notable app

stores include Apple's App Store, Android Market, HP App Catalog, BlackBerry App

World, and Windows Marketplace. App stores simplify the user experience when

consumers need to search, purchase, install, or rate native applications. Another

advantage native apps have is their ability to interact with device APIs. For instance,

native applications have the ability to communicate with most device APIs including

contacts, calendar, camera, and the network API to name a few.

In this chapter, we will discuss how we can break these Mobile Web barriers. In

particular, we will introduce PhoneGap and show how PhoneGap can help bridge these

gaps for our jQuery Mobile apps. As an example, we will take an existing jQuery Mobile

app, wrap it with PhoneGap and deploy our app to the native iOS and Android

platforms.

We will also see how we can distribute our jQuery Mobile apps to an app store without

PhoneGap. For instance, Open App Market is an app store for HTML5 mobile apps that

can be an alternative for those that find the native app store distribution process

cumbersome and slow.

Lastly, we will take a peek at the progress the W3C is making on client-side device APIs

that browsers will someday support. This will be very important for Mobile Web because

it will allow our Web applications to access device APIs (calendar, contacts, camera,

etc.) with zero dependencies on external frameworks.

10

CHAPTER 10: Easy Deployment with PhoneGap 228

What is PhoneGap?
PhoneGap1 is an open-source development framework that allows you to build cross-

platform native apps with web technologies like jQuery Mobile. For instance, we can

take an existing jQuery Mobile web app, wrap it with the PhoneGap framework and

distribute it to all native platforms that PhoneGap supports. Currently, PhoneGap

supports the native iOS, Android, BlackBerry, webOS, and Symbian platforms. In

addition to PhoneGap's native distribution capabilities, it also exposes an API that

allows our Mobile Web applications to interact with device specific APIs including the

file system, notifications, and camera to name a few. For the complete list, refer to

PhoneGap's supported features by platform.2 The PhoneGap API allows us to extend

our jQuery Mobile applications in ways that were previously only possible with native

SDK's.

Running jQuery Mobile as an iOS App
In this section, we are going to wrap a jQuery Mobile app with PhoneGap and run it on

the native iOS platform. To set up PhoneGap for the iOS platform, we can reference

PhoneGap's “Getting Started Guide with iOS.”3 PhoneGap has step-by-step

instructions for installing PhoneGap on every platform and their instructions are very

detailed with screenshots for assistance. Installation of Xcode, the IDE for iOS

development4 is a prerequisite for developing to the iOS platform. If you choose to

bypass the Xcode installation it will still be valuable to follow along to familiarize

yourself with the general steps that are necessary to set up PhoneGap on a native

platform. While each platform has specific IDE setup instructions, the general process

of installing PhoneGap, setting up the project, and deploying are consistent steps for

all platforms. After your iOS platform is set up, you should have a new Xcode project

that looks similar to Figure 10–1.

1 See http://www.phonegap.com/.

2 See http://www.phonegap.com/about/features.

3 See http://www.phonegap.com/start#ios-x4.

4 See http://developer.apple.com/xcode/.

http://www.phonegap.com/
http://www.phonegap.com/about/features
http://www.phonegap.com/start#ios-x4
http://developer.apple.com/xcode/

CHAPTER 10: Easy Deployment with PhoneGap 229

Figure 10–1. Initial Xcode project with PhoneGap support

The “www” directory shown in Figure 10–1 is the application root directory. Within this

directory are the PhoneGap JavaScript library and a default page (index.html). The

index.html page will be shown as the initial landing page when we run the app. In Xcode,

to build and run the app, click the “Run” button that appears in Xcode's upper left

corner. After clicking “Run”, the app will compile, the iOS simulator will launch, and the

index page will be shown (see Figure 10–2).

CHAPTER 10: Easy Deployment with PhoneGap 230

Figure 10–2. Initial screen when running PhoneGap's default app in Xcode

With a PhoneGap project setup in Xcode we can now import an existing jQuery Mobile

app into our project. The steps for importing a jQuery Mobile app into our Xcode project

and deploying as a native iOS app are listed below:

1. First, we need to import an existing jQuery Mobile project into Xcode's “www”

root directory. For this exercise, you may import your own jQuery Mobile app or

import the jQuery Mobile project that is included in the chapter 10 source code

folder. For example, if we import the jQuery Mobile files from the Chapter 10

source code directory and move them into our “www” directory, our Xcode

project structure should appear as the figure below:

CHAPTER 10: Easy Deployment with PhoneGap 231

2. After importing the jQuery Mobile project into our PhoneGap project we need to

import PhoneGap's JavaScript library as a top-level resource:

<head>
 <meta charset="utf-8">
 <title>jMovies</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" type="text/css" href="jquery.mobile-min.css" />
 <link rel="stylesheet" type="text/css" href="custom.css" />
 <script type="text/javascript" src="phonegap-1.0.0.js"></script>
 <script type="text/javascript" src="jquery-min.js"></script>
 <script type="text/javascript" src="custom.js"></script>
 <script type="text/javascript" src="jquery.mobile-min.js"></script>
</head>

The PhoneGap library is an API that provides access to many device specific

features (camera, media, storage, etc.). PhoneGap has documentation and

examples of all their supported APIs on their website5. Importing the PhoneGap

library is only necessary when your application needs to interact with PhoneGap's

native capabilities.

3. The last step is to run and test our application. In Xcode, click the “Run” button.

This will compile the app and launch it within the iOS simulator. If you imported

the jQuery Mobile project from the chapter 10 source code the initial screen to

appear will be the springboard (see Figure 10–3).

5 See http://docs.phonegap.com/.

http://docs.phonegap.com/

CHAPTER 10: Easy Deployment with PhoneGap 232

Figure 10–3. jQuery Mobile running as a native iOS app

To help validate that the PhoneGap library was properly installed I added a listener for

PhoneGap's device-ready event. When this event fires, PhoneGap is in a ready state

and we may begin communicating with the PhoneGap API (see Listing 10–1).

Listing 10–1. PhoneGap is ready (ch10/custom.js)

$(document).bind("deviceready", function(){
 navigator.notification.alert("PhoneGap is initialized...");
});

As shown in Figure 10–3, when PhoneGap is in a ready state we display an alert view

indicating that PhoneGap has been initialized. The alert notification in Listing 10–1 is an

example of how we can programmatically interact with PhoneGap's API to access native

functionality.

CHAPTER 10: Easy Deployment with PhoneGap 233

NOTE: PhoneGap has simplified the process of converting our jQuery Mobile web app to a native
platform running on iOS. From a technical perspective, our jQuery Mobile web app is now

running within an iOS Web View.

Do you see any differences when comparing our jQuery Mobile app running within a

Safari browser (see Figure 10–4) versus the native app running in iOS (see Figure 10–5)?

Figure 10–4. jQuery Mobile running within a browser Figure 10–5. jQuery Mobile running as a native iOS app

The most obvious difference is that the browser chrome is available within the Safari

browser, but not in the native app. If you recall our “Back Button” Section from Chapter 3,

back buttons are initially disabled in jQuery Mobile because the browser chrome already

provides build-in navigation buttons. However, for users running native iOS apps, the back

button within the header is a primary means of navigation. Fortunately, we can enable back

buttons in jQuery Mobile with a simple configuration update (see Listing 10–2).

CHAPTER 10: Easy Deployment with PhoneGap 234

Listing 10–2. Globally enable back buttons (ch10/custom.js)

$(document).bind("mobileinit", function(){
 $.mobile.page.prototype.options.addBackBtn = true;
});

The back button in jQuery Mobile is very intelligent. It will only appear when there is a

page in history to go back to. After enabling the back button globally our native iOS

users will feel more comfortable when navigating the app (see Figure 10–6).

Figure 10–6. Globally enable back buttons for navigation support

With back buttons enabled globally we may also want to disable them on specific pages

where they are not necessary. In particular, we will want to prevent the back button from

appearing on the home screen. To prevent the back button from appearing on a given

page, we can add the data-add-back-btn=”false” attribute to the page container:

<div data-role="page" id="home" data-add-back-btn="false">

As a result, when we navigate back to our home screen the back button will not be

shown.

CHAPTER 10: Easy Deployment with PhoneGap 235

Now that we are capable of deploying our jQuery Mobile app to the native iOS platform

we will also want to customize the default app icon (see Figure 10–7) and splash screen

(see Figure 10–8).

Figure 10–7. PhoneGap's default app icon in iOS Figure 10–8. PhoneGap's default splash screen in iOS

App icons are stored in the project's /Resources/icons directory and splash screen

images are stored in the /Resources/splash directory (see Figure 10–9). Images are

available for different iOS screen densities and sizes.

CHAPTER 10: Easy Deployment with PhoneGap 236

Figure 10–9. Xcode's images for splash screen and app icons

Also, when you need to change the bundle display name or identifier, those can be set

in Xcode in the project's info tab (see Figure 10–10). The bundle display name sets the

label for the app icon and the bundle identifier is used by iOS to uniquely identify your

application.

Figure 10–10. Setting bundle display name and identifier

CHAPTER 10: Easy Deployment with PhoneGap 237

TIP: When developing with PhoneGap, it is recommended to set the
$.mobile.allowCrossDomainPages configuration option to true:

$(document).bind(“mobileinit”, function(){

 $.mobile.allowCrossDomainPages = true;

});

Phone Gap's web view allows applications to make cross-domain calls. This is usually allowed so

the application can fetch data from their home server. By default, jQuery Mobile will treat cross-
domain requests as external links. As a result, the cross-domain page will not be loaded into the
DOM of the current page and no transitions will be applied. Therefore, if you want to allow jQuery

Mobile to manage the page loading logic of cross-domain requests in PhoneGap, set this option

to true.

That completes the entire process from installing PhoneGap to running our jQuery

Mobile app on the native iOS platform. After your app is production ready, the final step

is distributing your iOS app to Apple's App Store. Although the process can be lengthy,

the complete instructions for distributing your app to Apple's App Store can be found in

Apple's iOS developer library6.

Running jQuery Mobile as an Android App
In this section, we are going to wrap a jQuery Mobile app with PhoneGap and run it on

the native Android platform. To set up PhoneGap on the Android platform, we will

reference PhoneGap's “Getting Started Guide with Android”7. Installation of Eclipse, the

IDE for Android development, is a prerequisite. After your Android platform is set up, you

should have a new Eclipse project that looks similar to Figure 10–11.

6 See http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/
ios_development_workflow/145-
Distributing_Applications/distributing_applications.html.

7 See http://www.phonegap.com/start#android.

http://developer.apple.com/library/ios/#documentation/Xcode/Conceptual/
http://www.phonegap.com/start#android

CHAPTER 10: Easy Deployment with PhoneGap 238

Figure 10–11. Initial Eclipse project with PhoneGap support

The “www” directory shown in Figure 10–11 is the application root directory. Within this

directory are the PhoneGap JavaScript library and a default page (index.html). The

index.html page will be shown as the initial landing page when we run the app. In

Eclipse, to build and run the app, click the Run menu, select Run As, and choose

Android Application. After we compile and run the app, the Android simulator will launch

and the index page will be shown (see Figure 10–12).

CHAPTER 10: Easy Deployment with PhoneGap 239

Figure 10–12. Initial screen when running PhoneGap's default app in Eclipse

TIP: If you find it takes too long for the Android simulator to launch you may prefer to deploy to

an actual device for testing. For this setup, make sure USB debugging is enabled on your device
(Settings ➤ Applications ➤ Development) and plug it into your system. Now when you run your

application, it will launch much quicker.

With a PhoneGap project setup in Eclipse we can now import an existing jQuery Mobile

app into our project. The steps for importing a jQuery Mobile app into our Eclipse

project and deploying as a native Android app are listed below:

CHAPTER 10: Easy Deployment with PhoneGap 240

1. First, we need to import an existing jQuery Mobile project into Eclipse's “www”

root directory. For this exercise, you may import your own jQuery Mobile app or

import the jQuery Mobile project that is included in the chapter 10 source code

folder. For example, if we import the jQuery Mobile files from the Chapter 10

source code directory and move them into our “www” directory, our Eclipse

project structure should appear as shown in Figure 10–13:

Figure 10–13. an Eclipse project

2. After importing the jQuery Mobile project into our Eclipse project we need to

import PhoneGap's JavaScript library as a top-level resource:

<head>
 <meta charset="utf-8">
 <title>jMovies</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" type="text/css" href="jquery.mobile-min.css" />
 <link rel="stylesheet" type="text/css" href="custom.css" />
 <script type="text/javascript" src="phonegap-1.0.0.js"></script>
 <script type="text/javascript" src="jquery-min.js"></script>

CHAPTER 10: Easy Deployment with PhoneGap 241

 <script type="text/javascript" src="custom.js"></script>
 <script type="text/javascript" src="jquery.mobile-min.js"></script>
</head>

3. The last step is to run and test our application. In Eclipse, click the Run menu,

select Run As, and choose Android Application. This will compile the app and

launch it within the Android simulator. If you imported the jQuery Mobile project

from the chapter 10 source code the initial screen to appear will be the

springboard (see Figure 10–14).

Figure 10–14. Initial screen when running PhoneGap from Eclipse

If you recall from our iOS example we globally enabled the back button to appear on all

screens because back buttons are often fixed within the header of an iOS app. Since

Android has a hardware based back button, it is not necessary to enable our back

buttons (see Figure 10–15).

CHAPTER 10: Easy Deployment with PhoneGap 242

Figure 10–15. No back button necessary on Android

TIP: Extract platform specific dependencies in separate files. This separation will help simplify

the management of different configurations across platforms. For instance, create a separate
configuration file for each supported platform: custom-ios.js, custom-android.js. Now each

platform can load their unique dependencies.

Now that we are capable of deploying our jQuery Mobile app to the native Android

platform we will also want to customize the default app icon (see Figure 10–16).

CHAPTER 10: Easy Deployment with PhoneGap 243

Figure 10–16. PhoneGap's default app icon in Android

The Android app icons are stored in the project's /res/drawable-* directories with

images available for high, medium, and low densities (see Figure 10–17).

CHAPTER 10: Easy Deployment with PhoneGap 244

Figure 10–17. Android's app icon images

That completes the entire process from installing PhoneGap to running our jQuery

Mobile app on the native Android platform. When your app is ready for production, the

final step is distributing your Android app to Android Market. The complete instructions

for distributing your app to Android Market can be found in Android's Development

Guide.8

Open App Market
Open App Market9 is an app store for HTML5 mobile apps that allows us to search,

purchase, install, or rate HTML5 mobile apps just like the native app stores (see

Figure 10–18).

8 See http://developer.android.com/guide/publishing/publishing.html.

9 See http://openappmkt.com/.

http://developer.android.com/guide/publishing/publishing.html
http://openappmkt.com/

CHAPTER 10: Easy Deployment with PhoneGap 245

Figure 10–18. Open App Market

To get started with Open App Market we must first install it onto our device. Currently,

Open App Market is available to iOS and Android users. To install Open App Market,

scan the QR code in Figure 10–19 with your iOS or Android device.

Figure 10–19: QR code to install Open App Market. Alternatively, you can go to openappmkt.com and click the
installation link at the top of their site.

After installing the app, you can search for Mobile Web apps by category or popularity.

When you find a free or paid app you are interested in, download it and the app will be

CHAPTER 10: Easy Deployment with PhoneGap 246

saved on your home screen just like an app from a native app store. For instance, Figure

10–20 shows the Open App Market app alongside the Twitter and YouTube apps that

were downloaded from Open App Market.

Figure 10–20. Open App Market downloads apps in the same manner as native stores

Client-side Device APIs
If you need to build a mobile app that must integrate with device specific features like

camera, contacts, or the network, what mobile technology are you going to choose?

Today, our choices are limited. We must build with either a native platform or use a

hybrid technology like PhoneGap. It would be ideal if all web browsers had support for

these device specific features too. While no browsers have support for these features

today, the W3C is currently implementing working drafts for most of the major client-

side device APIs10. The most notable client-side device APIs include access to camera,

10 See http://www.w3.org/2009/dap/.

http://www.w3.org/2009/dap/

CHAPTER 10: Easy Deployment with PhoneGap 247

network, calendar, contacts, messaging, and battery information. While it may be too

soon to predict when browsers will have support for these features, at least progress is

well underway.

Summary
In this chapter we saw how to take an existing jQuery Mobile application and integrate it

with the PhoneGap framework. PhoneGap adds two unique capabilities to jQuery Mobile

web applications. First, we can take our existing jQuery Mobile web apps, wrap them

within the PhoneGap framework and distribute them to the native iOS, Android,

BlackBerry, WebOS, and Symbian platforms. Secondly, PhoneGap also exposes an API

that allows our Mobile Web applications to interact with device specific APIs, including

the file system, notifications, camera, and many more. The PhoneGap API allows us to

extend our jQuery Mobile applications in ways that were previously only possible with

native SDK's.

We were also introduced Open App Market, an app store for HTML5 mobile apps that

allows us to search, purchase, install, or rate HTML5 mobile apps just like the native app

stores. The Open App Market can be an alternative for those that find the native app

store distribution process cumbersome and slow.

Lastly, we introduced the client-side device APIs that the W3C is currently authoring.

These APIs will be very important for Mobile Web developers because it will allow our

Web applications to access device APIs (calendar, contacts, camera, etc.) with zero

dependencies on external frameworks.

 249

Index

■ A
Ajax-driven navigation, 21

mobile.changePage(), 23

arguments, 23–25

configuration, 25

Hijax request, 22

■ B
Back button, 48

enabling options, 48

linking, 50

Buttons, 63, 64

custom icons, 70

dynamic buttons, 73

corners boolean, 74

enable and disable methods, 74

events, 76

icon string, 75

iconpos string, 75

iconshadow boolean, 75

initSelector CSS selector string,

75

inline boolean, 75

methods, 76

shawdow boolean, 76

with markup-driven options, 73

with plugin-driven options, 74

form-based buttons, 65

grouping buttons, 71–72

icon positioning, 69

icon-only buttons, 68–69

image buttons, 65–66

link buttons, 64

radio buttons. See Radio buttons

standard icons, 66–68

theming buttons, 72–73

■ C
Checkboxes

horizontal checkboxes, 95

with markup-driven options, 95

with plugin-driven options, 95

Client-side device APIs, 246

Client-side integration, RESTful

services, 202

client-side POST with Ajax, 208–14

Twitter integration, 202–8

Client-side POST with Ajax

Jersey’s annotations, 214

registration form, 208–9

thank you page, 211–13

with RESTful API, 209–11

Collapsible content blocks, 136–39

Collapsible sets, 140–41

Custom icon integration, buttons, 70

■ D, E
Dynamic buttons

corners boolean, 74

enable and disable methods, 74

events, 76

icon string, 75

iconpos string, 75

iconshadow boolean, 75

initSelector CSS selector string, 75

inline boolean, 75

methods, 76

shawdow boolean, 76

with markup-driven options, 73

with plugin-driven options, 74

■ F
Footer bar, 50

basics, 50

Index 250

buttons, 52

positioning, 52

structure, 51

Form elements, 63, 76

checkboxes, 94–95

form basics, 77–78

Mobiscroll date picker, 104–5

native form elements, 101–3

select menus, 83

corners boolean, 87

custom select menus, 85–86

disabled boolean, 88

dynamic select menus, 87

events, 90

hidePlaceholderMenuItems

boolean, 88

icon string, 88

iconpos string, 88

iconshadow boolean, 88

initSelector CSS selector string,

88

inline boolean, 89

methods, 89

nativeMenu boolean, 89

placeholder options, 86–87

shadow boolean, 89

theme string, 89

slider, 96–97

switch control, 99–101

text inputs, 78–81, See also Text

inputs

enable and disable methods, 81

markup-driven options, 81

plugin-driven options, 81

Formatting content, 125

collapsible content blocks, 136–39

collapsible sets, 140–41

CSS gradients, 141–45

five-column grid, Emoji icons,

130–31

four-column grid, App icons, 129–30

grid layouts, 125

grid template, 125–26

blocks, 126

grid container, 126

multi-row grid, 132–33

springboard, 134–36

three-column grid, CSS

enhancements, 128–29

two-column grid, 127–28

uneven grids, 133–34

Form-based buttons, 65

■ G
Google Maps integration, 222

using JavaScript, 224–26

with JQuery Mobile, 222–24

Grouping buttons, 71–72

■ H
Header bar, 39

buttons, 42

with only icons, 44

with text and icons, 43

positioning, 40–42

structure, 40

truncated header/footer, 46

with segmented control, 45–46

■ I
Icon positioning, 69

Icon-only buttons, 68–69

Icon-only toolbars, 53–54

Image buttons, 65–66

■ J, K
jQuery Mobile, 1, 13

accessiblity, 11

Ajax-driven navigation, 21

mobile.changePage(), 23

arguments, 23–25

configuration, 25

Hijax request, 22

buttons. See Buttons

multi-page document, 18–19

internal page title, 19–20

vs. single-page document, 20–21

page enhancements, 16–18

page template, 13–16

progressive enhancement, 6–7

responsive design, 8–10

responsive designs, 34–36

simplified markup-driven

development, 5–6

Index 251

supported devices, 2

themable design, 10–11

transition effects, 25

action sheets, 31–32

alert dialog, 29

confirmation dialog, 29

dialog UX guidelines, 33–34

link vs. page configuration, 31

link-level transformation, 30

page-level transformation, 30

process, 26–28

unified UI, 4–5

universal access, 1–3

jQuery Mobile API, 171

configuration, 171

mobile options. SeeMobile

options, configuration

script placement, 172

data attributes, 190

events, 181

mobileinit, 183

page change events. See Page

change events, jQuery Mobile

API

page initializationevents. See

Page initializationevents, jQuery

Mobile API

page load events. See Page load

events, jQuery Mobile API

page transitionevents. See Page

transitionevents, jQuery Mobile

API

triggering events, 189

methods, 176

jqmData(), 180

jqmHasData(), 180

jqmRemoveData(), 180

mobile.changePage(), 176–78

mobile.hidePageLoadingMsg(),

178

mobile.loadPage(), 178

mobile.showPageLoadingMsg(),

179

mobile.silentScroll(number), 179

properties

mobile.activePage, 190

mobile.firstPage, 190

mobile.pageContainer, 190

jQuery Mobile CSS file, 149

structure, 150

theme, 149

global theme settings, 150

swatches, 149, 150

■ L
Link buttons, 64

List Views, 107

badges/count bubbles \r badges,

117

basic lists \r basic, 107

dynamic lists \r dynamic, 121

filtering \r filter, 118

inset lists \r inset, 108

list divers \r dividers, 109

list options \r listoptions, 122

Lists with Thumbnails and Icons /r

thumbnails, 111

numbered list \r numbered, 114

plugins

countTheme

string, 122

CSSselector

string, 122

dividerTheme

string, 122

events, 123

inset boolean, 122

methods, 123

splitIcon string, 122

splitTheme string, 122

theme string, 123

read-only lists \r readonly, 115

with split buttons \r split, 113

■ M

Mobile options, configuration

activeBtnClass, 172

activePageClass, 172

ajaxEnabled, 172

allowCrossDomainPages, 172

autoInitializePage, 173

defaultDialogTransition, 173

Index 252

defaultPageTransition, 173

gradeA, 173

hashListeningEnabled, 173

loadingMessage, 173

minScrollBack, 174

nonHistorySelectors, 174

ns, 174, 175

page.prototype.options.addBackBtn,

175

page.prototype.options.keepNative,

175

pageLoadErrorMessage, 175

subPageUrlKey, 176

touchOverflowEnabled, 176

Mobiscroll, 104–5

■ N
Navigation, 39

back button, 48

enabling options, 48

linking, 50

footer bar, 50

basics, 50

buttons, 52

positioning, 52

structure, 51

header bar

basics, 39

buttons, 42–44

positioning, 40–42

structure, 40

truncated header/footer, 46

with segmented control, 45–46

tab bars, 56

custom icons, 58–59

persistent tab bars, 57

segmented control, 59–60, 59–60

with standard icons, 56–57

toolbars, 53

with icons, 53–54

with segmented control, 54–55

■ O
Open App market, 227, 244–46

■ P, Q
Page change events, jQuery Mobile API

pagebeforechange, 183, 184

pagechangefailed, 184

Page initializationevents, jQuery Mobile

API

pagebeforecreate, 186

pagecreate, 187

pageinit, 187

Page load events, jQuery Mobile API

pagebeforeload, 185

pageload, 185

pageloadfailed, 186

Page transitionevents, jQuery Mobile

API

page event logger console, 189

pagebeforehide, 187

pagebeforeshow, 188

pagehide, 188

pageshow, 188

PhoneGap, 227, 228

an Android App, 237

app icons, 242–44

Eclipse project, 237–41

an iOS App, 228

app icons, 235

enable back buttons, 233–34

splash screen, 235

vs. Safari browser, 233

Xcode project, 229–32

■ R
Radio buttons, 90–92

checkbox radio plugin

events, 93

initSelector CSS selector string,

92

methods, 93

theme string, 93

dynamic radiobuttons, 92

■ S
Select Menus, 83

corners boolean, 87

custom select menus, 85–86

disabled boolean, 88

dynamic select menus, 87

events, 90

Index 253

hidePlaceholderMenuItems boolean,

88

icon string, 88

iconpos string, 88

iconshadow boolean, 88

initSelector CSS selector string, 88

inline boolean, 89

methods, 89

nativeMenu boolean, 89

placeholder options, 86–87

shadow boolean, 89

theme string, 89

Server-side Form POST with MVC

registration form, 215–16

Server-side integration, MVC, 215

GET request handler, 219

MoviesController, 219–21

registration controller, 217

server-side data access, 219–21

server-side Form POST, 215–19

server-side vs. client-side, 221–22

servlet-mapping configuration,

216–17

thank you page, 217–18

Service integration, 201

client-side integration. See also

Client-side integration

Google maps integration. See also

Google maps integration

server-side integration. See also

Server-side integration

Slider, 96–97

disabled boolean, 97

dynamic slider, 97

events, 99

initSelector CSS selector string, 97

methods, 98

theme string, 98

trackTheme string, 98

Springboard, 134–36

with app icons, 135

with CSS gradients (Android), 142

with Glyphish icons, 135, 136

Styling buttons, 66–68

Swatches, 149, 150

button swatches, 152

form field swatches, 152

grid swatches, 151

list swatches, 151

visual priority conventions, 152

■ T, U, V W, X, Y, Z
Tab bars, 56

custom icons, 58–59

persistent tab bars, 57

with standard icons, 56–57

Text inputs, 78–81

enable and disable methods, 81, 82

events, 82

initSelector CSS selector string, 82

markup-driven options, 81

plugin-driven options, 81

theme string, 82

Theming buttons, 72–73

Theming framework, 147

data-theme attribute, 148

default themes by components,

152–55

global theme settings, 150

jQuery Mobile CSS file

swatches, 150–52

priority, 158–59

structure section, 150

swatches, 150

theme inheritance, 155–58

with alternate theme, 148

with default theme, 148

Toolbars, 53

with icons, 53–54

with segmented control, 54–55

Twitter integration

client-side Twitter integration, 206–7

movie review page, 202–3

results page, 203–4

with jQuery Mobile, 206

 i

Pro jQuery Mobile

■ ■ ■

Brad Broulik

Pro jQuery Mobile

Copyright © 2011 by Brad Broulik

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3966-6

ISBN-13 (electronic): 978-1-4302-3967-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Michelle Lowman
Development Editor: Susan Ethridge
Technical Reviewer: Jorge Ramon
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Jessica Belanger
Copy Editor: Lori Cavanaugh
Compositor: MacPS, LLC
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

To my parents, Luke and Reone for their unconditional love and support.
Mom, you'll be forever missed (1936 – 2010).

—Brad

v

Contents

Contents at a Glance .. iv
About the Author ...ix
About the Technical Reviewer ... x
Acknowledgments ..xi
Introduction ...xii

■Chapter 1: Why jQuery Mobile? ... 1
Universal Access ... 1
Unified UI Across All Mobile Platforms .. 4
Simplified Markup-Driven Development ... 5
Progressive Enhancement .. 6
Responsive Design .. 8

The Build Once, Run Anywhere Myth ... 9
Themable Styling .. 10
Accessible ... 11
Summary .. 12

■Chapter 2: Getting Started with jQuery Mobile .. 13
jQuery Mobile Page Template ... 13

jQuery Mobile Page Enhancements ... 16
Multi-Page Template ... 18

Setting the Page Title of an Internal Page ... 19
Single-Page versus Multi-Page Documents .. 20

Ajax-Driven Navigation ... 21
$.mobile.changePage() .. 23
Usage ... 23
Arguments ... 23
Configuring Ajax Navigation ... 25

Transitions .. 25
Dialogs .. 29

Link versus Page Configuration ... 31
Action Sheets ... 31
Dialog UX Guidelines .. 33

Responsive Layouts with Media Queries .. 34

■ CONTENTS

vi

Summary .. 37

■Chapter 3: Navigating with Headers, Toolbars, and Tab Bars 39
Header Bar .. 39

Header Basics .. 39
Header Structure .. 40
Header Positioning ... 40
Header Buttons .. 42
Buttons with Text and Icons .. 43
Buttons with Only Icons ... 44
Header bar with a segmented control ... 45
Fixing a Truncated Header or Footer... .. 46

Back Button .. 48
Back Linking .. 50

Footer bar ... 50
Footer Basics ... 50
Footer Structure ... 51
Footer Positioning .. 52
Footer Buttons ... 52

Toolbars .. 53
Toolbar with Icons ... 53
Toolbar with a Segmented Control .. 54

Tab Bars .. 56
Tab Bar with Standard Icons .. 56
Persistent Tab Bar ... 57
Tab Bar with Custom Icons .. 58
Tab Bar with a Segmented Control .. 59

Summary .. 60

■Chapter 4: Form Elements and Buttons ... 63
Buttons .. 64

Link Buttons ... 64
Form Buttons ... 65
Image Buttons .. 65
Styling Buttons with Icons ... 66
Icon-only Buttons ... 68
Icon Positioning ... 69
Buttons with Custom Icons .. 70
Grouping Buttons ... 71
Theming Buttons .. 72
Dynamic Buttons .. 73

Form Elements .. 76
Form Basics ... 77
Text Inputs ... 78
Select Menus ... 83
Radio Buttons ... 90
Checkboxes .. 94
Slider .. 96
Switch Control ... 99

■ CONTENTS

vii

Native Form Elements .. 101
Mobiscroll Date Picker ... 104

Summary .. 105

■Chapter 5: List Views ... 107
List Basics ... 107
Inset Lists .. 108
List Dividers .. 110
Lists with Thumbnails and Icons .. 111
Split Button Lists ... 113
Numbered Lists ... 114
Read-only Lists ... 115
List Badges (Count Bubbles) ... 117
List Filtering with Search Bar ... 118
Dynamic Lists ... 121

List Options .. 122
List Methods .. 123
List Events ... 123

Summary .. 123

■Chapter 6: Formatting Content with Grids and CSS Gradients 125
Grid Layouts .. 125

Grid Template .. 125
Two-Column Grid ... 127
Three-Column Grid with CSS Enhancements ... 128
Four-Column Grid with App Icons .. 129
Five-Column Grid with Emoji Icons .. 130
Multi-Row Grid ... 132
Uneven Grids .. 133
Springboard ... 134

Collapsible Content Blocks ... 136
Collapsible Sets .. 140
Styling with CSS Gradients ... 141
Summary .. 145

■Chapter 7: Creating Themable Designs ... 147
Theme Basics ... 148
Themes and Swatches .. 149
Theme Defaults ... 152
Theme Inheritance .. 155

Theme Precedence .. 158
Custom Themes .. 159
ThemeRoller .. 164

Swatch and Global Settings ... 165
Preview Inspector and QuickSwatch Bar ... 166
Adobe Kuler Integration ... 167
Getting Started ... 167

Summary .. 169

■ CONTENTS

viii

■Chapter 8: jQuery Mobile API .. 171
Configuring jQuery Mobile .. 171

Custom Script Placement .. 172
Configurable jQuery Mobile Options .. 172

Methods .. 176
Events ... 181

Events Overview .. 183
Trigger Events .. 189

Properties ... 190
Data Attributes .. 190
Summary .. 200

■Chapter 9: Service Integration Strategies ... 201
Client-side Integration with RESTful Services .. 202

Client-side Twitter Integration with Ajax ... 202
Client-side Form POST with Ajax ... 208

Server-side Integration with MVC ... 215
Server-side Form POST with MVC ... 215
Server-side Data Access with MVC .. 219
Server-side versus Client-side ... 221

Google Maps Integration ... 222
Summary .. 226

■Chapter 10: Easy Deployment with PhoneGap .. 227
What is PhoneGap? ... 228
Running jQuery Mobile as an iOS App .. 228
Running jQuery Mobile as an Android App .. 237
Open App Market .. 244
Client-side Device APIs ... 246
Summary .. 247

Index ... 249

ix

About the Author

Brad Broulik is a senior developer specializing in enterprise mobile
development at HealthPartners. Prior to mobile development he was the lead
software architect at a financial services organization. He has extensive
experience with most mobile technologies, particularly jQuery Mobile. He has
contributed multiple pull requests to the jQuery Mobile project on GitHub and
is actively developing several enterprise mobile apps with jQuery Mobile. He
blogs regularly at http://bradbroulik.blogspot.com, tweets as @BradBroulik,
and can be contacted at BradBroulik@gmail.com. He lives with his wife and
daughter in Minnesota and enjoys exercising, outdoor activities, and spending
time with family.

http://bradbroulik.blogspot.com
mailto:BradBroulik@gmail.com

x

About the Technical Reviewer

Jorge Ramon is the founder of a small technology company that focuses on software
development and developer education on mobile, web, and desktop technologies. He is also the
author of the Ext JS 3.0 Cookbook.

xi

Acknowledgments

I want to extend an enormous amount of appreciation to the entire jQuery Mobile core team:
John Resig, Todd Parker, Scott Jehl, Kin Blas, John Bender, and Ghislain Seguin. It has been a
pleasure to write about your remarkable creation.

I also want to thank the entire Apress team for their guidance and feedback: Michelle
Lowman, editor; Jessica Belanger, coordinating editor; Susan Ethridge, developmental editor;
Jorge Ramon, technical reviewer. This book would not have been possible without your help.

I want to especially thank my wife and daughter for their patience, support, and assistance
with this project. Thank you!

xii

Introduction

We are currently witnessing a shift in the way enterprises and individuals build and distribute
mobile applications. Initially, the strategy was to build separate native apps for each major
platform. However, teams quickly realized that maintaining multiple platforms was unsustainable
as mobile teams lost their agility. The mobile teams that can build once and ship to all devices
tomorrow will have a competitive advantage and jQuery Mobile can help get you there.

jQuery Mobile is a framework for delivering cross-platform mobile web applications with a
unified interface. jQuery Mobile combines responsive layouts with progressive enhancement to
render the best possible user experience from a single code base. With jQuery Mobile, we will see
how to create themable, responsive, native-looking applications for iOS, Android, Windows
Phone, Blackberry, and more. We will discover what sets jQuery Mobile apart from other mobile
web development platforms and we will walk through practical examples of jQuery Mobile
features, including design elements and event handling.

What you'll learn
■ Unique features of jQuery Mobile

■ jQuery Mobile core features, including page structure, navigation, form elements, lists,
and grids

■ How to create themable designs

■ The entire jQuery Mobile API, including data attributes, methods, and events

■ Integrating web services, Google Maps, and Geolocation into your jQuery Mobile apps

■ How to extend jQuery Mobile with PhoneGap when you need to distribute to an app
store or access device functionality

■ How to apply jQuery Mobile to specific cases, including iOS and Android apps

Who This Book Is For
Mobile developers who want to master jQuery Mobile and build cross-platform mobile web
applications from a single code base.

Downloading the code
The source code for this book is available to readers at http://www.apress.com in the Source Code
section of the book's home page. Please feel free to visit the Apress web site and download the
code there.

http://www.apress.com

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments

	Introduction
	What you'll learn
	Who This Book Is For
	Downloading the code

	Why jQuery Mobile?
	Universal Access
	Unified UI Across All Mobile Platforms
	Simplified Markup-Driven Development
	Progressive Enhancement
	Responsive Design
	Responsive Forms

	Themable Styling
	Accessible
	Summary

	Getting Started with jQuery Mobile
	jQuery Mobile Page Template
	Multi-Page Template
	Ajax-Driven Navigation
	Transitions
	Dialogs
	Alerts:
	Action Sheets:

	Responsive Layouts with Media Queries
	Summary

	Navigating with Headers, Toolbars, and Tab Bars
	Header Bar
	Back Button
	Footer bar
	Toolbars
	Tab Bars
	Summary

	Form Elements and Buttons
	Buttons
	Button Options
	Button Methods
	Button Events

	Form Elements
	Dynamic Text Inputs
	Text Input Options
	Text Input Methods
	Text Input Events
	Custom Select Menus
	Placeholder Options
	Dynamic Select Menus
	Select Menu Options
	Select Menu Methods
	Select Menu Events
	Dynamic Radio Buttons
	Checkbox and Radio Button Options
	Checkbox and Radio Button Methods
	Checkbox and Radio Button Events
	Dynamic Checkboxes
	Dynamic Slider
	Slider Options
	Slider Methods
	Slider Events
	Dynamic Switch Control

	Summary

	List Views
	List Basics
	Inset Lists
	List Dividers
	Lists with Thumbnails and Icons
	Split Button Lists
	Numbered Lists
	Read-only Lists
	List Badges (Count Bubbles)
	List Filtering with Search Bar
	Dynamic Lists
	Summary

	Formatting Content with Grids and CSS Gradients
	Grid Layouts
	Collapsible Content Blocks
	Collapsible Sets
	Styling with CSS Gradients
	Summary

	Creating Themable Designs
	Theme Basics
	Themes and Swatches
	Theme Defaults
	Theme Inheritance
	Custom Themes
	ThemeRoller
	Summary

	jQuery Mobile API
	Configuring jQuery Mobile
	Methods
	Events
	Page Change Events
	Page Load Events
	Page Initialization Events
	Page Transition Events

	Properties
	Data Attributes
	Summary

	Service Integration Strategies
	Client-side Integration with RESTful Services
	Server-side Integration with MVC
	Google Maps Integration
	Summary

	Easy Deployment with PhoneGap
	What is PhoneGap?
	Running jQuery Mobile as an iOS App
	Running jQuery Mobile as an Android App
	Open App Market
	Client-side Device APIs
	Summary

	Index
	A
	B
	C
	D, E
	F
	G
	H
	I
	J, K
	L
	M
	N
	O
	P, Q
	R
	S
	T, U, V W, X, Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

